Advertisement

The Problem of Integrating of Biological and Clinical Markers of Aging

  • Arnold MitnitskiEmail author
  • Kenneth Rockwood
Chapter
Part of the Healthy Ageing and Longevity book series (HAL, volume 10)

Abstract

Our goal is to address human health as a whole, with an ultimate goal of understanding how health changes with age. Here we discuss the need to integrate multidimensional information about health (and not only human) that is available in many biological and clinical databases. Reviewing several means of such integration (frailty index, dysregulation score, and some indices of biological age) we pay particular attention to the frailty index, which allows such an integration in a simple but an effective way. Most importantly, it makes it possible to apply mathematical modeling techniques and computer simulations to gain insight into the complexity of human health. By applying such modeling methodology (complex dynamical networks) we can take advantage of one of the most essential characteristics of biological systems—the interdependence of multiple biological and clinical characteristics of such systems. That also explains the effectiveness in many practical applications of using the frailty index based on the multiple clinical and biological traits instead of selecting only those that survive iterative p value testing.

Keywords

Aging Complexity Biomarkers Frailty Deficits accumulation Frailty index Mortality Biological versus chronological age Complex networks 

References

  1. Antoch MP, Wrobel M, Kuropatwinski KK, Gitlin I, Leonova KI, Toshkov I, Gleiberman AS, Hutson AD, Chernova OB, Gudkov AV (2017) Physiological frailty index (PFI): quantitative in-life estimate of individual biological age in mice. Aging 19;9(3):615–626CrossRefGoogle Scholar
  2. Arbeev KG, Ukraintseva SV, Bagley O, Zhbannikov IY, Cohen AA, Kulminski AM, Yashin AI (2018) “Physiological dysregulation” as promising measure of robustness and resilience in aging studies and new indicator of preclinical disease. J Gerontol A Biol Sci Med Sci.  https://doi.org/10.1093/gerona/gly136. [Epub ahead of print]CrossRefGoogle Scholar
  3. Barnes J (1991) Aristotle, metaphysics 8.6. In: The complete works of Aristotle. Princeton University Press, PrincetonGoogle Scholar
  4. Bellmann R (1957) Dynamic programming. Princeton University Press, PrincetonGoogle Scholar
  5. Belsky DW, Caspi A, Houts R, Cohen HJ, Corcoran DL, Danese A, Harrington H, Israel S, Levine ME, Schaefer JD, Sugden K, Williams B, Yashin AI, Poulton R, Moffitt TE (2015) Quantification of biological aging in young adults. Proc Natl Acad Sci USA. pii: 201506264Google Scholar
  6. Belsky DW, Moffitt TE, Cohen AA, Corcoran DL, Levine ME, Prinz JA, Schaefer J, Sugden K, Williams B, Poulton R, Caspi A (2018) Eleven telomere, epigenetic clock, and biomarker-composite quantifications of biological aging: do they measure the same thing? Am J Epidemiol 187(6):1220–1230CrossRefGoogle Scholar
  7. Blodgett JM, Theou O, Howlett SE, Rockwood K (2017) A frailty index from common clinical and laboratory tests predicts increased risk of death across the life course. Geroscience.  https://doi.org/10.1007/s11357-017-9993-7CrossRefGoogle Scholar
  8. Cohen AA, Milot E, Li Q, Legault V, Fried LP, Ferrucci L (2014) Cross-population validation of statistical distance as a measure of physiological dysregulation during aging. Exp Gerontol 57:203–210CrossRefGoogle Scholar
  9. Enroth S, Enroth SB, Johansson Å, Gyllensten U (2015) Protein profiling reveals consequences of lifestyle choices on predicted biological aging. Sci Rep 1(5):17282CrossRefGoogle Scholar
  10. Farrell SG, Mitnitski AB, Rockwood K, Rutenberg AD (2016) Network model of human aging: frailty limits and information measures. Phys Rev E 94(5–1):052409CrossRefGoogle Scholar
  11. Farrell SG, Mitnitski AB, Theou O, Rockwood K, Rutenberg AD (2018) Probing the network structure of health deficits in human aging. Phys Rev E 98:032302Google Scholar
  12. Feridooni HA, Kane AE, Ayaz O, Boroumandi A, Polidovitch N, Tsushima RG, Rose RA, Howlett SE (2017) The impact of age and frailty on ventricular structure and function in C57BL/6J mice. J Physiol 595(12):3721–3742CrossRefGoogle Scholar
  13. Fontana L, Kennedy BK, Longo VD, Seals D, Melov S (2014) Medical research: treat ageing. Nature 511(7510):405–407CrossRefGoogle Scholar
  14. Gavrilov LA, Gavrilova NA (2006) Reliability theory of aging and longevity (Chap. 1). In: Masoro EJ, Austan SN (eds) Handbook of the biology of aging, 6th edn. Elsevier, Amsterdam, pp 3–42CrossRefGoogle Scholar
  15. Hannum G, Guinney J, Zhao L, Zhang L, Hughes G, Sadda S, Klotzle B, Bibikova M, Fan JB, Gao Y, Deconde R, Chen M, Rajapakse I, Friend S, Ideker T, Zhang K (2013) Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol Cell 49(2):359–367CrossRefGoogle Scholar
  16. Hochschild R (1994) Validating biomarkers of aging—mathematical approaches and results of a 2462-person study. In: Balin AK (ed) Practical handbook of human biologic age determination. CRC Press, Boca Raton, pp 93–144Google Scholar
  17. Hoogendijk EO, Rockwood K, Theou O, Armstrong JJ, Onwuteaka-Philipsen BD, Deeg DJH, Huisman M (2018) Tracking changes in frailty throughout later life: results from a 17-year longitudinal study in the Netherlands. Age Ageing 47(5):727–733CrossRefGoogle Scholar
  18. Horvath S (2013) DNA methylation age of human tissues and cell types. Genome Biol 14(10):R115CrossRefGoogle Scholar
  19. Howlett SE, Rockwood MR, Mitnitski A, Rockwood K (2014) Standard laboratory tests to identify older adults at increased risk of death. BMC Med 7(12):171CrossRefGoogle Scholar
  20. Justice JN, Nambiar AM, Tchkonia T, LeBrasseur NK, Pascual R, Hashmi SK, Prata L, Masternak MM, Kritchevsky SB, Musi N, Kirkland JL (2019) Senolytics in idiopathic pulmonary fibrosis: results from a first-in-human, open-label, pilot study. EBioMedicine. pii: S2352-3964(18)30629-7Google Scholar
  21. Kane AE, Ayaz O, Ghimire A, Feridooni HA, Howlett SE (2017) Implementation of the mouse frailty index. Can J Physiol Pharmacol 95(10):1149–1155CrossRefGoogle Scholar
  22. Kane AE, Shin S, Wong AA, Fertan E, Faustova NS, Howlett SE, Brown RE (2018) Sex differences in healthspan predict lifespan in the 3xTg-AD mouse model of Alzheimer’s Disease. Front Aging Neurosci 12(10):172CrossRefGoogle Scholar
  23. Kane AE, Keller KM, Heinze-Milne S, Grandy SA, Howlett SE (2019) A murine frailty index based on clinical and laboratory measurements: links between frailty and pro-inflammatory cytokines differ in a sex-specific manner. J Gerontol A Biol Sci Med Sci 74(3):275–282CrossRefGoogle Scholar
  24. Kennedy CC, Ioannidis G, Rockwood K, Thabane L, Adachi JD, Kirkland S, Pickard LE, Papaioannou A (2014) A frailty index predicts 10-year fracture risk in adults age 25 years and older: results from the Canadian Multicentre Osteoporosis Study (CaMos). Osteoporos Int 25(12):2825–2832CrossRefGoogle Scholar
  25. Kimura M, Mizuta C, Yamada Y, Okayama Y, Nakamura E (2012) Constructing an index of physical fitness age for Japanese elderly based on 7-year longitudinal data: sex differences in estimated physical fitness age. Age 34(1):203–214CrossRefGoogle Scholar
  26. Klemera, Doubal (2006) A new approach to the concept and computation of biological age. Mech Ageing Dev 127:240–248CrossRefGoogle Scholar
  27. Levine ME (2013) Modeling the rate of senescence: can estimated biological age predict mortality more accurately than chronological age? J Gerontol A Biol Sci Med Sci 68(6):667–674CrossRefGoogle Scholar
  28. Lipsitz LA, Goldberger AL (1992) Loss of ‘complexity’ and aging. Potential applications of fractals and chaos theory to senescence. JAMA 267(13):1806–1809CrossRefGoogle Scholar
  29. Liu Z, Kuo PL, Horvath S, Crimmins E, Ferrucci L, Levine M (2018) A new aging measure captures morbidity and mortality risk across diverse subpopulations from NHANES IV: a cohort study. PLoS Med 15(12):e1002718CrossRefGoogle Scholar
  30. Mamoshina P, Kochetov K, Putin E, Cortese F, Aliper A, Lee WS, Ahn SM, Uhn L, Skjodt N, Kovalchuk O, Scheibye-Knudsen M, Zhavoronkov A (2018) Population specific biomarkers of human aging: a big data study using South Korean, Canadian, and Eastern European patient populations. J Gerontol A Biol Sci Med Sci 73(11):1482–1490CrossRefGoogle Scholar
  31. McEwen BS, Stellar E (1993) Stress and the individual. Mechanisms leading to disease. Arch Intern Med 153(18):2093–2101CrossRefGoogle Scholar
  32. Miller RA (2001) Biomarkers of aging. Sci Aging Knowl Environ 2001(1):pe2CrossRefGoogle Scholar
  33. Mitnitski A, Rockwood K (2014) Biological age revisited. J Gerontol A Biol Sci Med Sci 69(3):295–296CrossRefGoogle Scholar
  34. Mitnitski A, Rockwood K (2015) Aging as a process of deficit accumulation: its utility and origin. Interdiscip Top Gerontol 40:85–98CrossRefGoogle Scholar
  35. Mitnitski A, Rockwood K (2016) The rate of aging: the rate of deficit accumulation does not change over the adult life span. Biogerontology 17(1):199–204CrossRefGoogle Scholar
  36. Mitnitski AB, Mogilner AJ, Rockwood K (2001) Accumulation of deficits as a proxy measure of aging. Sci World J 1:323–336CrossRefGoogle Scholar
  37. Mitnitski AB, Graham JE, Mogilner AJ, Rockwood K (2002) Frailty, fitness and late-life mortality in relation to chronological and biological age. BMC Geriatr 27(2):1CrossRefGoogle Scholar
  38. Mitnitski A, Song X, Skoog I, Broe GA, Cox JL, Grunfeld E, Rockwood K (2005) Relative fitness and frailty of elderly men and women in developed countries and their relationship with mortality. J Am Geriatr Soc 53(12):2184–2189CrossRefGoogle Scholar
  39. Mitnitski A, Collerton J, Martin-Ruiz C, Jagger C, von Zglinicki T, Rockwood K, Kirkwood TB (2015) Age-related frailty and its association with biological markers of ageing. BMC Med 13:161CrossRefGoogle Scholar
  40. Mitnitski A, Howlett SE, Rockwood K (2017a) Heterogeneity of human aging and its assessment. J Gerontol A Biol Sci Med Sci 72(7):877–884PubMedGoogle Scholar
  41. Mitnitski AB, Rutenberg AD, Farrell S, Rockwood K (2017b) Aging, frailty and complex networks. Biogerontology 18(4):433–446CrossRefGoogle Scholar
  42. Putin E, Mamoshina P, Aliper A, Korzinkin M, Moskalev A, Kolosov A, Ostrovskiy A, Cantor C, Vijg J, Zhavoronkov A (2016) Deep biomarkers of human aging: application of deep neural networks to biomarker development. Aging 8(5):1021–1033CrossRefGoogle Scholar
  43. Pyrkov TV, Slipensky K, Barg M, Kondrashin A, Zhurov B, Zenin A, Pyatnitskiy M, Menshikov L, Markov S, Fedichev PO (2018) Extracting biological age from biomedical data via deep learning: too much of a good thing? Sci Rep 8(1):5210CrossRefGoogle Scholar
  44. Rattan SI (2013) Healthy ageing, but what is health? Biogerontology 14(6):673–677CrossRefGoogle Scholar
  45. Rockwood K, Song X, Mitnitski A (2011) Changes in relative fitness and frailty across the adult lifespan: evidence from the Canadian National Population Health Survey. CMAJ 183(8):E487–E494.  https://doi.org/10.1503/cmaj.101271CrossRefPubMedPubMedCentralGoogle Scholar
  46. Rockwood K, Blodgett JM, Theou O, Sun MH, Feridooni HA, Mitnitski A, Rose RA, Godin J, Gregson E, Howlett SE (2017) A frailty index based on deficit accumulation quantifies mortality risk in humans and in mice. Sci Rep 21(7):43068.  https://doi.org/10.1038/srep43068CrossRefGoogle Scholar
  47. Rutenberg AD, Mitnitski AB, Farrell SG, Rockwood K (2017) Unifying aging and frailty through complex dynamical networks. Exp Gerontol. pii: S0531–5565(17)30482-5Google Scholar
  48. Song X, Mitnitski A, Rockwood K (2011) Nontraditional risk factors combine to predict Alzheimer disease and dementia. Neurology 77(3):227–234CrossRefGoogle Scholar
  49. Taneja S, Mitnitski AB, Rockwood K, Rutenberg AD (2016) Dynamical network model for age-related health deficits and mortality. Phys Rev E 93(2):022309CrossRefGoogle Scholar
  50. Wallace LM, Theou O, Kirkland SA, Rockwood MR, Davidson KW, Shimbo D, Rockwood K (2014) Accumulation of non-traditional risk factors for coronary heart disease is associated with incident coronary heart disease hospitalization and death. PLoS ONE 9(3):e90475CrossRefGoogle Scholar
  51. Wallace LMK, Theou O, Godin J, Andrew MK, Bennett DA, Rockwood K (2019) Investigation of frailty as a moderator of the relationship between neuropathology and dementia in Alzheimer’s disease: a cross-sectional analysis of data from the rush memory and aging project. Lancet Neurol 18(2):177–184.  https://doi.org/10.1016/S1474-4422(18)30371-5CrossRefPubMedGoogle Scholar
  52. Whitehead JC, Hildebrand BA, Sun M, Rockwood MR, Rose RA, Rockwood K, Howlett SE (2014) A clinical frailty index in aging mice: comparisons with frailty index data in humans. J Gerontol A Biol Sci Med Sci 69(6):621–632CrossRefGoogle Scholar
  53. Yashin AI, Wu D, Arbeev KG, Ukraintseva SV (2010) Joint influence of small-effect genetic variants on human longevity. Aging 2(9):612–620CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of MedicineDalhousie UniversityHalifaxCanada

Personalised recommendations