Advertisement

Molecular Signature of Aging Driven by Wnt Signaling Pathway: Lessons from Nematodes

  • Marco Lezzerini
  • Yelena V. BudovskayaEmail author
Chapter
Part of the Healthy Ageing and Longevity book series (HAL, volume 10)

Abstract

Aging is a universal biological process that afflicts every creature on this planet. To date, we have an inferior understanding of what causes this degeneration. A commonly held view is that aging is the result of damage accumulation over a lifetime. However, research has shown that aging is not only the result of wear and tear in the organism but also of genetic programs involved in organismal development that go awry as selective pressure is released. With this in mind, we have investigated the Wnt signaling pathway, as a significant and highly conserved developmental pathway that guides many essential events during embryonic and larval development. We also discuss how these genetic programs orchestrate changes in the organism that could cause aging and open a new research direction on the role of Wnt signaling in aging and age-related diseases.

Keywords

Aging Wnt signaling Antagonistic pleiotropy Caenorhabditis elegans Developmental programs GATA transcriptional circuit Gene expression RNA sequencing Reproduction Metabolism 

References

  1. Arantes-Oliveira N, Apfeld J, Dillin A, Kenyon C (2002) Regulation of life-span by germ-line stem cells in caenorhabditis elegans. Science 295(5554):502–505PubMedCrossRefPubMedCentralGoogle Scholar
  2. Baker DJ et al (2011) Clearance of p16 Ink4a-positive senescent cells delays ageing-associated disorders. Nature 479(7372):232–236PubMedPubMedCentralCrossRefGoogle Scholar
  3. Banerjee D, Chen X, Lin SY, Slack FJ (2010) kin-19/casein kinase I alpha has dual functions in regulating asymmetric division and terminal differentiation in C. elegans epidermal stem cells. Cell Cycle 9:4748–4765PubMedPubMedCentralCrossRefGoogle Scholar
  4. Barzilai N, Huffman DM, Muzumdar RH, Bartke A (2012) The critical role of metabolic pathways in aging. Diabetes 61:1315–1322PubMedPubMedCentralCrossRefGoogle Scholar
  5. Blackburn EH, Greider CW, Szostak JW (2006) Telomeres and telomerase: the path from maize, Tetrahymena and yeast to human cancer and aging. Nat Med 12:1133–1138PubMedCrossRefPubMedCentralGoogle Scholar
  6. Blasco MA (2007) Telomere length, stem cells and aging. Nat Chem Biol 3:640–649PubMedCrossRefPubMedCentralGoogle Scholar
  7. Bolanowski MA, Russell RL, Jacobson LA (1981) Quantitative measures of aging in the nematode caenorhabditis elegans. I. Population and longitudinal studies of two behavioral parameters. Mech Ageing Dev 15:279–295PubMedCrossRefPubMedCentralGoogle Scholar
  8. Brack AS. et al. (2007) Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis. Science 317: 807–810PubMedCrossRefGoogle Scholar
  9. Bresnick EH, Katsumura KR, Lee H-Y, Johnson KD, Perkins AS (2012) Master regulatory GATA transcription factors: mechanistic principles and emerging links to hematologic malignancies. Nucleic Acids Res 40:5819–5831PubMedPubMedCentralCrossRefGoogle Scholar
  10. Budovskaya YV et al (2008a) An elt-3/elt-5/elt-6 GATA transcription circuit guides aging in C. elegans. Cell 134(2):291–303PubMedPubMedCentralCrossRefGoogle Scholar
  11. Budovskaya YV et al (2008b) An elt-3/elt-5/elt-6 GATA transcription circuit guides are aging in C. elegans. Cell 134:291–303PubMedPubMedCentralCrossRefGoogle Scholar
  12. Cassata G et al (2005) ceh-16/engrailed patterns the embryonic epidermis of caenorhabditis elegans. Development 132:739–749PubMedCrossRefGoogle Scholar
  13. Christodoulides C et al (2006) WNT10B mutations in human obesity. Diabetologia 49:678–684PubMedPubMedCentralCrossRefGoogle Scholar
  14. Clevers H, Nusse R (2012) Wnt/β-Catenin Signaling, and Disease. Cell 149:1192–1205CrossRefGoogle Scholar
  15. Conboy IM et al (2005) Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature 433:760–764PubMedCrossRefPubMedCentralGoogle Scholar
  16. Curran SP, Ruvkun G (2007) Lifespan regulation by evolutionarily conserved genes essential for viability. PLoS Genet 3:e56PubMedPubMedCentralCrossRefGoogle Scholar
  17. DasGupta R, Fuchs E (1999) Multiple roles for activated LEF/TCF transcription complexes during hair follicle development and differentiation. Development 126:4557–4568PubMedGoogle Scholar
  18. Dillin A, Crawford DK, Kenyon C (2002) Timing requirements for insulin/IGF-1 signaling in C. elegans. Science 298:830–834PubMedCrossRefPubMedCentralGoogle Scholar
  19. Dilman VM (1971) Age-associated elevation of the hypothalamic, threshold to feedback control, and its role in development, aging, and disease. Lancet 1:1211–1219PubMedCrossRefPubMedCentralGoogle Scholar
  20. Dilman VM, Young JK (1994) Development, Aging, and Disease—A New Rationale for an Intervention Strategy. Harwood Academic Publishers, LondonGoogle Scholar
  21. Doonan R et al (2008) Against the oxidative damage theory of aging: superoxide dismutases protect against oxidative stress but have little or no effect on lifespan in caenorhabditis elegans. Genes Dev 22:3236–3241PubMedPubMedCentralCrossRefGoogle Scholar
  22. Edman U et al (2009) Lifespan extension by dietary restriction is not linked to protection against somatic DNA damage in Drosophila melanogaster. Aging Cell 8:331–338PubMedPubMedCentralCrossRefGoogle Scholar
  23. Eisenmann DM (2005) Wnt signaling. WormBook 1–17.  https://doi.org/10.1895/wormbook.1.7.1
  24. Essers MA, De Vries-Smits LM, Barker N, Polderman PE, Burgering BM, Korswagen HC (2005). Functional interaction between beta-catenin and FOXO in oxidative stress signaling. Science 308(5725): 1181–1184. Retrieved from http://w, M. A. et al. (2005) Functional interaction between beta-catenin and FOXO in oxidative stress signaling. Science 308: 1181–1184PubMedCrossRefGoogle Scholar
  25. Ewbank JJ et al (1997) Structural and functional conservation of the caenorhabditis elegans timing gene clk-1. Science 275:980–983PubMedCrossRefGoogle Scholar
  26. Gat U, DasGupta R, Degenstein L, Fuchs E De (1998) Novo hair follicle morphogenesis and hair tumors in mice expressing a truncated beta-catenin in skin. Cell 95:605–614PubMedCrossRefGoogle Scholar
  27. Gerstbrein B, Stamatas G, Kollias N, Driscoll M (2005) In vivo spectrofluorimetry reveals endogenous biomarkers that report healthspan and dietary restriction in caenorhabditis elegans. Aging Cell 4:127–137PubMedCrossRefGoogle Scholar
  28. Ghazi A, Henis-Korenblit S, Kenyon C (2009) A transcription elongation factor that links signals from the reproductive system to lifespan extension in caenorhabditis elegans. PLoS Genet 5:e1000639PubMedPubMedCentralCrossRefGoogle Scholar
  29. Gleason JE, Eisenmann DM (2010) Wnt signaling controls the stem cell-like asymmetric division of the epithelial seam cells during C. elegans larval development. Dev Biol 348:58–66PubMedPubMedCentralCrossRefGoogle Scholar
  30. Gleason JE, Szyleyko EA, Eisenmann DM (2006) Multiple redundant Wnt signaling components function in two processes during C. elegans vulval development. Dev Biol 298:442–457PubMedCrossRefPubMedCentralGoogle Scholar
  31. Golden TR, Melov S (2004) Microarray analysis of gene expression with age in individual nematodes. Aging Cell 3:111–124PubMedCrossRefPubMedCentralGoogle Scholar
  32. Gorrepati L, Thompson KW, Eisenmann DMC (2013) elegans GATA factors EGL-18 and ELT-6 function downstream of Wnt signaling to maintain the progenitor fate during asymmetric larval divisions of the seam cells. Development 140:2093–2102PubMedPubMedCentralCrossRefGoogle Scholar
  33. Goudeau J, Aguilaniu H (2010) Carbonylated proteins are eliminated during reproduction in C. elegans. Aging Cell 9:991–1003PubMedCrossRefPubMedCentralGoogle Scholar
  34. Grant SFA et al (2006) Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat Genet 38:320–323PubMedCrossRefPubMedCentralGoogle Scholar
  35. Green JL, Inoue T, Sternberg PW (2008) Opposing Wnt pathways orient cell polarity during organogenesis. Cell 134:646–656PubMedPubMedCentralCrossRefGoogle Scholar
  36. Harding JJ (2002) Viewing molecular mechanisms of aging through a lens. Ageing Res Rev 1:465–479PubMedCrossRefPubMedCentralGoogle Scholar
  37. Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 11:298–300PubMedCrossRefGoogle Scholar
  38. Heidler T, Hartwig K, Daniel H, Wenzel U (2010) Caenorhabditis elegans lifespan extension caused by treatment with an orally active ROS-generator is dependent on DAF-16 and SIR-2.1. Biogerontology 11:183–195PubMedCrossRefGoogle Scholar
  39. Herndon LA et al (2002) Stochastic and genetic factors influence tissue-specific decline in ageing C. elegans. Nature 419:808–814PubMedCrossRefGoogle Scholar
  40. Hill AA, Hunter CP, Tsung BT, Tucker-Kellogg G, Brown EL (2000) Genomic analysis of gene expression in C. elegans. Science 290:809–812PubMedCrossRefPubMedCentralGoogle Scholar
  41. Hoffman J, Kuhnert F, Davis CR, Kuo CJ (2004) Wnts as essential growth factors for the adult small intestine and colon. Cell Cycle 3:554–557PubMedPubMedCentralGoogle Scholar
  42. Honda Y, Honda S (1999) The daf-2 gene network for longevity regulates oxidative stress resistance and Mn-superoxide dismutase gene expression in caenorhabditis elegans. Faseb J 13:1385–1393PubMedCrossRefPubMedCentralGoogle Scholar
  43. Houtkooper RH, Williams RW, Auwerx J (2010) Metabolic networks of longevity. Cell 142:9–14PubMedCrossRefPubMedCentralGoogle Scholar
  44. Houtkooper RH, Pirinen E, Auwerx J (2012) Sirtuins as regulators of metabolism and healthspan. Nat Rev Mol Cell Biol 13:225–238PubMedPubMedCentralCrossRefGoogle Scholar
  45. Hsin H, Kenyon C (2009) Signals from the reproductive system regulate the lifespan of C. elegans animal is extended. Our findings suggest that germline signals act. Nature 399:362–366CrossRefGoogle Scholar
  46. Hutt DM, Powers ET, Balch WE (2009) The proteostasis boundary in misfolding diseases of membrane traffic. FEBS Lett 583:2639–2646PubMedPubMedCentralCrossRefGoogle Scholar
  47. Johnson TE (1987) Aging can be genetically dissected into component processes using long-lived lines of caenorhabditis elegans. Proc Natl Acad Sci U S A 84:3777–3781PubMedPubMedCentralCrossRefGoogle Scholar
  48. Kenyon C, Chang J, Gensch E, Rudner A, Tabtiang R (1993) A C. elegans mutant that lives twice as long as wild-type. Nature 366:461–464PubMedPubMedCentralCrossRefGoogle Scholar
  49. King RS et al (2009) The N- or C-terminal domains of DSH-2 can activate the C. elegans Wnt/beta-catenin asymmetry pathway. Dev Biol 328:234–244PubMedPubMedCentralCrossRefGoogle Scholar
  50. Kinzler KW et al (1991) Identification of FAP locus genes from chromosome 5q21. Science 253:661–665PubMedCrossRefPubMedCentralGoogle Scholar
  51. Koga H, Kaushik S, Cuervo AM (2011) Protein homeostasis and aging: The importance of exquisite quality control. Ageing Res Rev 10:205–215PubMedCrossRefPubMedCentralGoogle Scholar
  52. Koh K et al (2002) Cell fates and fusion in the C. elegans vulval primordium are regulated by the EGL-18 and ELT-6 GATA factors—apparent direct targets of the LIN-39 Hox protein. Development 129:5171–5180PubMedPubMedCentralGoogle Scholar
  53. Korinek V et al (1997) Constitutive transcriptional activation by a beta-catenin-Tcf complex in APC-/- colon carcinoma. Science 275:1784–1787PubMedCrossRefPubMedCentralGoogle Scholar
  54. Korinek V et al (1998) Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4. Nat Genet 19:379–383PubMedCrossRefPubMedCentralGoogle Scholar
  55. Korswagen HC, Herman MA, Clevers HC (2000) Distinct beta-catenins mediate adhesion and signalling functions in C. elegans. Nature 406:527–532PubMedCrossRefPubMedCentralGoogle Scholar
  56. Kuhnert F et al (2004) Essential requirement for Wnt signaling in the proliferation of adult small intestine and colon revealed by adenoviral expression of Dickkopf-1. Proc Natl Acad Sci U S A 101:266–271PubMedCrossRefPubMedCentralGoogle Scholar
  57. Kujoth GC et al (2005) Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. Science 309:481–484PubMedCrossRefPubMedCentralGoogle Scholar
  58. Lai C-H (2000) Identification of novel human genes evolutionarily conserved in caenorhabditis elegans by comparative proteomics. Genome Res 10:703–713PubMedPubMedCentralCrossRefGoogle Scholar
  59. Lango Allen H et al (2012) GATA6 haploinsufficiency cause pancreatic agenesis in humans. Nat Genet 44:20–22CrossRefGoogle Scholar
  60. Lapierre LR, Gelino S, Meléndez A, Hansen M (2011) Autophagy and lipid metabolism coordinately modulate lifespan in Germline-less C. elegans. Curr Biol 21:1507–1514PubMedPubMedCentralCrossRefGoogle Scholar
  61. Lezzerini M (2015) Aging in caenorhabditis elegans; the role of Wnt signalling. University of Amstedam. https://hdl.handle.net/11245/1.511838
  62. Lezzerini M, Budovskaya Y (2013) A dual role of the Wnt signaling pathway during aging in caenorhabditis elegans. Aging Cell [Epub ahea]Google Scholar
  63. Lezzerini M, Budovskaya Y (2014) A dual role of the Wnt signaling pathway during aging in caenorhabditis elegans. Aging Cell 13:8–18PubMedCrossRefPubMedCentralGoogle Scholar
  64. Lezzerini M, Smith RL, Budovskaya Y (2013) Developmental drift as a mechanism for aging: lessons from nematodes. Biogerontology.  https://doi.org/10.1007/s10522-013-9462-3PubMedCrossRefPubMedCentralGoogle Scholar
  65. Liu J et al (2005) A small-molecule agonist of the Wnt signaling pathway. Angew Chem Int Ed Engl 44:1987–1990PubMedCrossRefPubMedCentralGoogle Scholar
  66. Liu H et al (2007) Augmented Wnt signaling in a mammalian model of accelerated aging. Science 317:803–806PubMedCrossRefPubMedCentralGoogle Scholar
  67. Loffredo FS et al (2013) Growth differentiation factor 11 is a circulating factor that reverses age-related cardiac hypertrophy. Cell 153:828–839PubMedPubMedCentralCrossRefGoogle Scholar
  68. Logan CY, Nusse R (2004) The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 20:781–810PubMedCrossRefPubMedCentralGoogle Scholar
  69. López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G (2013) The hallmarks of aging Europe PMC funders group. Cell 6:1194–121705CrossRefGoogle Scholar
  70. Lund J et al (2002) Transcriptional profile of aging in C. elegans. Curr Biol 12:1566–1573PubMedCrossRefPubMedCentralGoogle Scholar
  71. MacDonald BT, Tamai K, He X (2009) Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell 17:9–26PubMedPubMedCentralCrossRefGoogle Scholar
  72. McGee MD et al (2011) Loss of intestinal nuclei and intestinal integrity in aging C. elegans. Aging Cell 10:699–710PubMedPubMedCentralCrossRefGoogle Scholar
  73. Medawar PB (1952) An unsolved problem of biology. H.K. Lewis, LondonGoogle Scholar
  74. Miranda CJ et al (2012) Aging brain microenvironment decreases hippocampal neurogenesis through Wnt-mediated survivin signaling. Aging Cell 11:542–552PubMedPubMedCentralCrossRefGoogle Scholar
  75. Mizumoto K, Sawa H (2007) Two betas or not two betas: regulation of asymmetric division by beta-catenin. Trends Cell Biol 17:465–473PubMedCrossRefPubMedCentralGoogle Scholar
  76. Morris JZ, Tissenbaum HA, Ruvkun G (1996) A phosphatidylinositol-3-OH kinase family member regulating longevity and diapause in caenorhabditis elegans. Nature 382:536–539PubMedCrossRefGoogle Scholar
  77. Moskalev AA et al. (2012) The role of DNA damage and repair in aging through the prism of Koch-like criteria. Ageing Res Rev  https://doi.org/10.1016/j.arr.2012.02.001PubMedCrossRefPubMedCentralGoogle Scholar
  78. Mukhopadhyay A, Tissenbaum HA (2007) Reproduction and longevity: secrets revealed by C. elegans. Trends Cell Biol. 17:65–71PubMedCrossRefPubMedCentralGoogle Scholar
  79. Nishisho I et al (1991) Mutations of chromosome 5q21 genes in FAP and colorectal cancer patients. Science 253:665–669PubMedCrossRefPubMedCentralGoogle Scholar
  80. Pan C-L, Peng C-Y, Chen C-H, McIntire S (2011) Genetic analysis of age-dependent defects of the caenorhabditis elegans touch receptor neurons. Proc Natl Acad Sci U S A 108:9274–9279PubMedPubMedCentralCrossRefGoogle Scholar
  81. Parker JA et al (2012) Integration of β-catenin, sirtuin, and FOXO signaling protects from mutant huntingtin toxicity. J Neurosci 32:12630–12640PubMedPubMedCentralCrossRefGoogle Scholar
  82. Perez VI et al (2009) The overexpression of major antioxidant enzymes does not extend the lifespan of mice. Aging Cell 8:73–75PubMedCrossRefGoogle Scholar
  83. Phillips BT, Kimble J (2009a) A new look at TCF and beta-catenin through the lens of a divergent C. elegans Wnt pathway. Dev Cell 17:27–34PubMedPubMedCentralCrossRefGoogle Scholar
  84. Phillips BT, Kimble J (2009b) A new look at TCF and beta-catenin through the lens of a divergent C. elegans Wnt pathway. Dev Cell 17:27–34PubMedPubMedCentralCrossRefGoogle Scholar
  85. Pitt JN, Kaeberlein M (2015) Why is aging conserved and what can we do about it? PLoS Biol 13:e1002131PubMedPubMedCentralCrossRefGoogle Scholar
  86. Rando TA, Chang HY (2012) Aging, rejuvenation, and epigenetic reprogramming: resetting the aging clock. Cell 148:46–57PubMedPubMedCentralCrossRefGoogle Scholar
  87. Reya T, Clevers H (2005) Wnt signalling in stem cells and cancer. Nature 434:843–850PubMedCrossRefPubMedCentralGoogle Scholar
  88. Reya T et al (2003) A role for Wnt signalling in self-renewal of hematopoietic stem cells. Nature 423:409–414PubMedCrossRefGoogle Scholar
  89. Rubinfeld B et al (1997) Stabilization of beta-catenin by genetic defects in melanoma cell lines. Science 275:1790–1792PubMedCrossRefPubMedCentralGoogle Scholar
  90. Samuelson AV, Carr CE, Ruvkun G (2007) Gene activities that mediate increased lifespan of C. elegans insulin-like signaling mutants. Genes Dev 21:2976–2994PubMedPubMedCentralCrossRefGoogle Scholar
  91. Shaye DD, Greenwald I (2011) OrthoList: a compendium of C. elegans genes with human orthologs. PLoS One 6(5):e20085PubMedPubMedCentralCrossRefGoogle Scholar
  92. Smith ED et al (2008) Quantitative evidence for conserved longevity pathways between divergent eukaryotic species. Genome Res 18:564–570PubMedPubMedCentralCrossRefGoogle Scholar
  93. Sulston JE, White JG (1980) Regulation and cell autonomy during postembryonic development of caenorhabditis elegans. Dev Biol 78:577–597PubMedCrossRefGoogle Scholar
  94. Sulston JE, Schierenberg E, White JG, Thomson JN (1983) The embryonic cell lineage of the nematode caenorhabditis elegans. Dev Biol 100:64–119PubMedCrossRefGoogle Scholar
  95. Tacutu R. et al. (2012) Prediction of C. elegans longevity genes by human and worm longevity networks. PLoS One 7: e48282PubMedPubMedCentralCrossRefGoogle Scholar
  96. Talens RP et al (2012) Epigenetic variation during the adult lifespan: cross-sectional and longitudinal data on monozygotic twin pairs. Aging Cell 11:694–703PubMedPubMedCentralCrossRefGoogle Scholar
  97. Tank EMH, Rodgers KE, Kenyon C (2011) Spontaneous age-related neurite branching in caenorhabditis elegans. J Neurosci 31:9279–9288PubMedPubMedCentralCrossRefGoogle Scholar
  98. Tatar M, Bartke A, Antebi A (2003) The endocrine regulation of aging by insulin-like signals. Science 299:1346–1351PubMedPubMedCentralCrossRefGoogle Scholar
  99. Tissenbaum HA, Guarente L (2002) Model organisms as a guide to mammalian aging. Dev Cell 2:9–19PubMedCrossRefGoogle Scholar
  100. Tissenbaum HA, Ruvkun G (1998) An insulin-like signaling pathway affects both longevity and reproduction in caenorhabditis elegans. Genetics 148:703–717PubMedPubMedCentralGoogle Scholar
  101. Trifunovic A et al (2004) Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 429:417–423PubMedCrossRefGoogle Scholar
  102. Van Camp JK et al (2013) Mutation analysis of WNT10B in obese children, adolescents, and adults. Endocrine 44:107–113PubMedCrossRefGoogle Scholar
  103. Van Raamsdonk JM, Hekimi S (2012) Superoxide dismutase is dispensable for normal animal lifespan. Proc Natl Acad Sci U S A 109:5785–5790PubMedPubMedCentralCrossRefGoogle Scholar
  104. Van Raamsdonk JM et al (2010) Decreased energy metabolism extends lifespan in caenorhabditis elegans without reducing oxidative damage. Genetics 185:559–571PubMedPubMedCentralCrossRefGoogle Scholar
  105. Veeman MT, Axelrod JD, Moon RT (2003) A second canon. Functions and mechanisms of beta-catenin-independent Wnt signaling. Dev. Cell 5:367–377PubMedCrossRefGoogle Scholar
  106. Vermulst M et al (2007) Mitochondrial point mutations do not limit the natural lifespan of mice. Nat Genet 39:540–543PubMedCrossRefGoogle Scholar
  107. Vermulst M et al (2008) DNA deletions and clonal mutations drive premature aging in mitochondrial mutator mice. Nat Genet 40:392–394PubMedCrossRefGoogle Scholar
  108. Villeda SA et al (2011) The ageing systemic milieu negatively regulates neurogenesis and cognitive function. Nature 477:90–94PubMedPubMedCentralCrossRefGoogle Scholar
  109. Wang MC, O’Rourke EJ, Ruvkun G (2008) Fat metabolism links germline stem cells and longevity in C. elegans. Science 322(5903):957–960PubMedPubMedCentralCrossRefGoogle Scholar
  110. Williams GC (1957) Pleiotropy, natural selection, and the evolution of senescence. Evolution 11:398–411CrossRefGoogle Scholar
  111. Wolff S, Dillin A (2006) The trifecta of aging in caenorhabditis elegans. Exp Gerontol 41:894–903PubMedCrossRefPubMedCentralGoogle Scholar
  112. Xu X, Kim SK (2012) The GATA transcription factor egl-27 delays aging by promoting stress resistance in caenorhabditis elegans. PLoS Genet 8:e1003108PubMedPubMedCentralCrossRefGoogle Scholar
  113. Yang W, Li J, Hekimi S (2007) A Measurable increase in oxidative damage due to a reduction in superoxide detoxification fails to shorten the lifespan of long-lived mitochondrial mutants of caenorhabditis elegans. Genetics 177:2063–2074PubMedPubMedCentralCrossRefGoogle Scholar
  114. Ye X et al (2007) Downregulation of Wnt signaling is a trigger for formation of facultative heterochromatin and onset of cell senescence in primary human cells. Mol Cell 27:183–196PubMedPubMedCentralCrossRefGoogle Scholar
  115. Zhang C, Cuervo AM (2008) Restoration of chaperone-mediated autophagy in aging liver improves cellular maintenance and hepatic function. Nat Med 14:959–965PubMedPubMedCentralCrossRefGoogle Scholar
  116. Zhang P, Judy M, Lee SJ, Kenyon C (2013) Direct and indirect gene regulation by a life-extending FOXO protein in C. elegans: roles for GATA factors and lipid gene regulators. Cell Metab 17:85–100PubMedPubMedCentralCrossRefGoogle Scholar
  117. Zheng R, Blobel GA (2010) GATA Transcription Factors and Cancer. Genes Cancer 1:1178–1188PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Laboratory Genetic Metabolic DiseasesAmsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology and MetabolismAmsterdamThe Netherlands
  2. 2.TruMe IncSouth San FranciscoUSA

Personalised recommendations