Advertisement

Quantification of the Biological Age of the Brain Using Neuroimaging

  • James H. ColeEmail author
  • Katja Franke
  • Nicolas Cherbuin
Chapter
Part of the Healthy Ageing and Longevity book series (HAL, volume 10)

Abstract

The cosmetic and behavioural aspects of ageing become increasingly apparent with the passing years. The individual variability in physical ageing can be immediately observed in people’s face, posture, voice and gait. In contrast, the pace at which our brains age is less obvious, only becoming apparent once substantial neurodegeneration manifests through cognitive decline and dementia. Therefore, a more timely and precise assessment of brain ageing is needed so its determinants and mechanisms can be more effectively identified and ultimately optimised. This chapter describes new approaches aimed at quantifying the biological age of the brain, so-called ‘brain age’; reviews how brain age can be contrasted to chronological age to index risk of premature brain ageing; and explores how brain age can be used to investigate genetic, environmental, health, and lifestyle factors contributing to accelerated ageing. Particular attention is given to the statistical approaches underpinning brain age, evaluating their validity and limitations. The developing brain-age literature covering diverse populations, all stages of life, health and psychopathology, humans and animals, is critically and comprehensively presented. Finally, gaps in our knowledge and unresolved methodological issues are summarised, alongside proposing future directions and highlighting opportunities for further research in this promising and exciting field.

Keywords

Brain ageing Neuroimaging MRI Machine learning Neuroscience 

References

  1. Al Zoubi O, Ki Wong C, Kuplicki RT, Yeh H-W, Mayeli A, Refai H, et al (2018) Predicting age from brain eeg signals—a machine learning approach. Frontiers Aging Neurosci 10:184Google Scholar
  2. Antonow-Schlorke I, Schwab M, Cox LA, Li C, Stuchlik K, Witte OW et al (2011) Vulnerability of the fetal primate brain to moderate reduction in maternal global nutrient availability. Proc Natl Acad Sci U S A 108(7):3011–3016PubMedPubMedCentralCrossRefGoogle Scholar
  3. Ashburner J (2007) A fast diffeomorphic image registration algorithm. Neuroimage 38(1):95–113PubMedCrossRefGoogle Scholar
  4. Atkinson EG, Rogers J, Mahaney MC, Cox LA, Cheverud JM (2015) Cortical folding of the primate brain: an interdisciplinary examination of the genetic architecture, modularity, and evolvability of a significant neurological trait in pedigreed baboons (Genus Papio). Genetics 200(2):651–665PubMedPubMedCentralCrossRefGoogle Scholar
  5. Aycheh HM, Seong J-K, Shin J-H, Na DL, Kang B, Seo SW, et al (2018) Biological brain age prediction using cortical thickness data: a large scale cohort study. Frontiers Aging Neurosci 10(252)Google Scholar
  6. Backman L, Karlsson S, Fischer H, Karlsson P, Brehmer Y, Rieckmann A et al (2011) Dopamine D(1) receptors and age differences in brain activation during working memory. Neurobiol Aging 32(10):1849–1856PubMedCrossRefGoogle Scholar
  7. Bäckman L, Lindenberger U, Li SC, Nyberg L (2010) Linking cognitive aging to alterations in dopamine neurotransmitter functioning: recent data and future avenues. Neurosci Biobehav Rev 34(5):670–677PubMedCrossRefGoogle Scholar
  8. Bagarinao E, Watanabe H, Maesawa S, Mori D, Hara K, Kawabata K et al (2018) An unbiased data-driven age-related structural brain parcellation for the identification of intrinsic brain volume changes over the adult lifespan. NeuroImage 169:134–144PubMedCrossRefGoogle Scholar
  9. Batouli SAH, Trollor JN, Wen W, Sachdev PS (2014) The heritability of volumes of brain structures and its relationship to age: a review of twin and family studies. Ageing Res Rev 13(1):1–9PubMedCrossRefGoogle Scholar
  10. Bentourkia M, Bol A, Ivanoiu A, Labar D, Sibomana Ḿ, Coppens A et al (2000) Comparison of regional cerebral blood flow and glucose metabolism in the normal brain: effect of aging. J Neurol Sci 181(1–2):19–28PubMedCrossRefGoogle Scholar
  11. Breslau J, Starr A, Sicotte N, Higa J, Buchsbaum MS (1989) Topographic EEG changes with normal aging and SDAT. Electroencephalogr Clin Neurophysiol 72(4):281–289PubMedCrossRefGoogle Scholar
  12. Brown T, Kuperman Joshua M, Chung Y, Erhart M, McCabe C, Hagler Donald J Jr et al (2012) Neuroanatomical assessment of biological maturity. Curr Biol 22(18):1693–1698PubMedPubMedCentralCrossRefGoogle Scholar
  13. Cameron J, Worrall-Carter L, Page K, Riegel B, Lo SK, Stewart S (2010) Does cognitive impairment predict poor self-care in patients with heart failure? Eur J Heart Fail 12(5):508–515PubMedCrossRefGoogle Scholar
  14. Chappell M, Macintosh B (2017) Introduction to perfusion quantification using arterial Spin labelling. Oxford University Press, Oxford, pp 1–135CrossRefGoogle Scholar
  15. Cherubini A, Caligiuri ME, Peran P, Sabatini U, Cosentino C, Amato F (2016) Importance of multimodal MRI in characterizing brain tissue and its potential application for individual age prediction. IEEE J Biomed Health Inform 20(5):1232–1239PubMedCrossRefGoogle Scholar
  16. Chui H, Gerstorf D, Hoppmann CA, Luszcz MA (2015) Trajectories of depressive symptoms in old age: Integrating age-, pathology-, and mortality-related changes. Psychol Aging 30(4):940–951PubMedCrossRefGoogle Scholar
  17. Cole JH, Franke K (2017) Predicting age using neuroimaging: innovative brain ageing biomarkers. Trends Neurosci 40(12):681–690PubMedCrossRefGoogle Scholar
  18. Cole JH, Leech R, Sharp DJ, Alzheimer’s Disease Neuroimaging Initiative (2015) Prediction of brain age suggests accelerated atrophy after traumatic brain injury. Ann Neurol 77(4):571–581Google Scholar
  19. Cole JH, Poudel RPK, Tsagkrasoulis D, Caan MWA, Steves C, Spector TD et al (2017a) Predicting brain age with deep learning from raw imaging data results in a reliable and heritable biomarker. NeuroImage 163C:115–124CrossRefGoogle Scholar
  20. Cole JH, Underwood J, Caan MWA, De Francesco D, van Zoest RA, Leech R et al (2017b) Increased brain-predicted aging in treated HIV disease. Neurology 88(14):1349–1357PubMedPubMedCentralCrossRefGoogle Scholar
  21. Cole JH, Annus T, Wilson LR, Remtulla R, Hong YT, Fryer TD et al (2017c) Brain-predicted age in Down Syndrome is associated with β-amyloid deposition and cognitive decline. Neurobiol Aging 56:41–49PubMedPubMedCentralCrossRefGoogle Scholar
  22. Cole JH, Caan MWA, Underwood J, De Francesco D, van Zoest RA, Wit FWNM et al (2018a) No evidence for accelerated ageing-related brain pathology in treated HIV: longitudinal neuroimaging results from the Comorbidity in Relation to AIDS (COBRA) project. Clin Infect Dis 66(12):1899–1909PubMedCrossRefGoogle Scholar
  23. Cole JH, Ritchie SJ, Bastin ME, Valdes Hernandez MC, Munoz Maniega S, Royle N et al (2018b) Brain age predicts mortality. Mol Psychiatry 23:1385–1392PubMedCrossRefGoogle Scholar
  24. Cole JH, Marioni RE, Harris SE, Deary IJ (2019) Brain age and other bodily ‘ages’: implications for neuropsychiatry. Mol Psychiatry 24:266–281PubMedPubMedCentralCrossRefGoogle Scholar
  25. Cox SR, Ritchie SJ, Tucker-Drob EM, Liewald DC, Hagenaars SP, Davies G et al (2016) Ageing and brain white matter structure in 3,513 UK Biobank participants. Nature communications. 7:13629PubMedPubMedCentralCrossRefGoogle Scholar
  26. Dang LC, Samanez-Larkin GR, Castrellon JJ, Perkins SF, Cowan RL, Zald DH (2016) Associations between dopamine D2 receptor availability and BMI depend on age. Neuroimage 138:176–183PubMedPubMedCentralCrossRefGoogle Scholar
  27. de Rooij SR, Caan MW, Swaab DF, Nederveen AJ, Majoie CB, Schwab M et al (2016) Prenatal famine exposure has sex-specific effects on brain size. Brain 139(Pt 8):2136–2142PubMedCrossRefGoogle Scholar
  28. Deary IJ, Corley J, Gow AJ, Harris SE, Houlihan LM, Marioni RE et al (2009) Age-associated cognitive decline. Br Med Bull 92(1):135–152PubMedCrossRefGoogle Scholar
  29. Dekaban AS (1978) Changes in brain weights during the span of human life: relation of brain weights to body heights and body weights. Ann Neurol 4(4):345–356PubMedCrossRefGoogle Scholar
  30. Desforges JF, Prinz PN, Vitiello MV, Raskind MA, Thorpy MJ (1990) Geriatrics: sleep disorders and aging. N Engl J Med 323(8):520–526CrossRefGoogle Scholar
  31. Dosenbach NUF, Nardos B, Cohen AL, Fair DA, Power JD, Church JA et al (2010) Prediction of individual brain maturity using fMRI. Science 329(5997):1358–1361PubMedPubMedCentralCrossRefGoogle Scholar
  32. Eavani H, Habes M, Satterthwaite TD, An Y, Hsieh MK, Honnorat N et al (2018) Heterogeneity of structural and functional imaging patterns of advanced brain aging revealed via machine learning methods. Neurobiol Aging 71:41–50PubMedCrossRefPubMedCentralGoogle Scholar
  33. Eramudugolla R, Cherbuin N, Easteal S, Jorm AF, Anstey KJ (2013) Self-reported cognitive decline on the informant questionnaire on cognitive decline in the elderly is associated with dementia, instrumental activities of daily living and depression but not longitudinal cognitive change. Dement Geriatr Cogn Disord 34(5–6):282–291Google Scholar
  34. Erus G, Battapady H, Satterthwaite TD, Hakonarson H, Gur RE, Davatzikos C, et al (2015) Imaging patterns of brain development and their relationship to cognition. Cerebral cortex (New York, NY: 1991) 25(6):1676–84Google Scholar
  35. Eyler LT, Sherzai A, Kaup AR, Jeste DV (2011) A review of functional brain imaging correlates of successful cognitive aging. Biol Psychiatry 70(2):115–122PubMedPubMedCentralCrossRefGoogle Scholar
  36. Fiske A, Gatz M, Pedersen NL (2003) Depressive symptoms and aging: the effects of illness and non-health-related events. J Gerontol Ser B Psychol Sci Soc Sci 58(6):P320–P328CrossRefGoogle Scholar
  37. Fjell AM, Westlye LT, Grydeland H, Amlien I, Espeseth T, Reinvang I et al (2013) Critical ages in the life course of the adult brain: nonlinear subcortical aging. Neurobiol Aging 34(10):2239–2247PubMedPubMedCentralCrossRefGoogle Scholar
  38. Fjell AM, Westlye LT, Grydeland H, Amlien I, Espeseth T, Reinvang I et al (2014) Accelerating cortical thinning: Unique to dementia or universal in aging? Cereb Cortex 24(4):919–934PubMedCrossRefPubMedCentralGoogle Scholar
  39. Fleisher AS, Chen K, Liu X, Ayutyanont N, Roontiva A, Thiyyagura P et al (2013) Apolipoprotein E ε4 and age effects on florbetapir positron emission tomography in healthy aging and Alzheimer disease. Neurobiol Aging 34(1):1–12PubMedCrossRefPubMedCentralGoogle Scholar
  40. Fontana L, Partridge L (2015) Promoting health and longevity through diet: from model organisms to humans. Cell 161(1):106–118PubMedPubMedCentralCrossRefGoogle Scholar
  41. Franke K, Gaser C (2012) Longitudinal changes in individual BrainAGE in healthy aging, mild cognitive impairment, and Alzheimer’s Disease. GeroPsych: J Gerontopsychol Geriatr Psychiatry 25(4):235–45Google Scholar
  42. Franke K, Ziegler G, Klöppel S, Gaser C (2010) Estimating the age of healthy subjects from T1-weighted MRI scans using kernel methods: exploring the influence of various parameters. NeuroImage 50(3):883–892PubMedCrossRefPubMedCentralGoogle Scholar
  43. Franke K, Luders E, May A, Wilke M, Gaser C (2012) Brain maturation: predicting individual BrainAGE in children and adolescents using structural MRI. NeuroImage 63(3):1305–1312PubMedCrossRefPubMedCentralGoogle Scholar
  44. Franke K, Gaser C, Manor B, Novak V (2013) Advanced BrainAGE in older adults with type 2 diabetes mellitus. Frontiers Aging Neurosci 5:90CrossRefGoogle Scholar
  45. Franke K, Ristow M, Gaser C (2014) Gender-specific impact of personal health parameters on individual brain aging in cognitively unimpaired elderly subjects. Frontiers Aging Neurosci 6:94CrossRefGoogle Scholar
  46. Franke K, Hagemann G, Schleussner E, Gaser C (2015) Changes of individual BrainAGE during the course of the menstrual cycle. Neuroimage 115:1–6PubMedCrossRefPubMedCentralGoogle Scholar
  47. Franke K, Dahnke R, Clarke G, Kuo A, Li C, Nathanielsz P, et al (2016) (eds). MRI based biomarker for brain aging in rodents and non-human primates. In: 2016 international workshop on pattern recognition in neuroimaging (PRNI) 22–24 June 2016Google Scholar
  48. Franke K, Clarke G, Dahnke R, Gaser C, Kuo A, Li C, et al (2017) Premature brain aging in baboons resulting from moderate fetal undernutrition. Frontiers Aging Neurosci 9(92)Google Scholar
  49. Franke K, Gaser C, de Rooij SR, Schwab M, Roseboom TJ (2018) Premature brain aging in humans exposed to maternal nutrient restriction during early gestation. NeuroImage 173:460–471PubMedCrossRefPubMedCentralGoogle Scholar
  50. Fraser MA, Shaw ME, Cherbuin N (2015) A systematic review and meta-analysis of longitudinal hippocampal atrophy in healthy human ageing. Neuroimage 112:364–374PubMedCrossRefPubMedCentralGoogle Scholar
  51. Fripp J, Bourgeat P, Acosta O, Raniga P, Modat M, Pike KE et al (2008) Appearance modeling of 11C PiB PET images: characterizing amyloid deposition in Alzheimer’s disease, mild cognitive impairment and healthy aging. NeuroImage 43(3):430–439PubMedCrossRefPubMedCentralGoogle Scholar
  52. Fujimoto R, Kondo C, Ito K, Wu K, Sato K, Taki Y, et al.(2016) (eds) Age estimation using effective brain local features from T1-weighted images. In: 2016 38th annual international conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 16–20 Aug 2016Google Scholar
  53. Ganu RS, Harris RA, Collins K, Aagaard KM (2012) Early origins of adult disease: approaches for investigating the programmable epigenome in humans, nonhuman primates, and rodents. ILAR J 53(3–4):306–321PubMedPubMedCentralCrossRefGoogle Scholar
  54. Gaser C, Franke K, Klöppel S, Koutsouleris N, Sauer H (2013) BrainAGE in mild cognitive impaired patients: predicting the conversion to Alzheimer’s disease. PloS one. 8(6)PubMedPubMedCentralCrossRefGoogle Scholar
  55. Greiner PA, Snowdon DA, Schmitt FA (1996) The loss of independence in activities of daily living: the role of low normal cognitive function in elderly nuns. Am J Public Health 86(1):62–66PubMedPubMedCentralCrossRefGoogle Scholar
  56. Groves AR, Smith SM, Fjell AM, Tamnes CK, Walhovd KB, Douaud G et al (2012) Benefits of multi-modal fusion analysis on a large-scale dataset: life-span patterns of inter-subject variability in cortical morphometry and white matter microstructure. NeuroImage 63(1):365–380PubMedCrossRefPubMedCentralGoogle Scholar
  57. Guggenmos M, Schmack K, Sekutowicz M, Garbusow M, Sebold M, Sommer C et al (2017) Quantitative neurobiological evidence for accelerated brain aging in alcohol dependence. Transl Psychiatry. 7(12):1279PubMedPubMedCentralCrossRefGoogle Scholar
  58. Gutierrez Becker B, Klein T, Wachinger C (2018) Alzheimer’s disease neuroimaging i, the Australian imaging B, lifestyle flagship study of a. Gaussian process uncertainty in age estimation as a measure of brain abnormality. NeuroImage 175:246–58PubMedCrossRefPubMedCentralGoogle Scholar
  59. Habes M, Erus G, Toledo JB, Zhang T, Bryan N, Launer LJ et al (2016) White matter hyperintensities and imaging patterns of brain ageing in the general population. Brain 139(Pt 4):1164–1179PubMedPubMedCentralCrossRefGoogle Scholar
  60. Haga KK, Khor YP, Farrall A, Wardlaw JM (2009) A systematic review of brain metabolite changes, measured with 1H magnetic resonance spectroscopy, in healthy aging. Neurobiol Aging 30(3):353–363PubMedCrossRefGoogle Scholar
  61. Hajek T, Franke K, Kolenic M, Capkova J, Matejka M, Propper L et al (2017) Brain age in early stages of bipolar disorders or schizophrenia. Schizophr Bull 45(1):190–198Google Scholar
  62. Han CE, Peraza LR, Taylor J-P, Kaiser M (2014) Predicting age across human lifespan based on structural connectivity from diffusion tensor imaging. In: Biomedical circuits and systems conference (BioCAS): IEEEGoogle Scholar
  63. Hannum G, Guinney J, Zhao L, Zhang L, Hughes G, Sadda S et al (2013) Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol Cell 49(2):359–367PubMedPubMedCentralCrossRefGoogle Scholar
  64. Hedman AM, van Haren NEM, Schnack HG, Kahn RS, Hulshoff Pol HE (2012) Human brain changes across the life span: A review of 56 longitudinal magnetic resonance imaging studies. Hum Brain Mapp 33(8):1987–2002PubMedCrossRefGoogle Scholar
  65. Hollander M, Koudstaal PJ, Bots ML, Grobbee DE, Hofman A, Breteler MMB (2003) Incidence, risk, and case fatality of first ever stroke in the elderly population. The rotterdam study. J Neurol Neurosurg Psychiatry 74(3):317CrossRefGoogle Scholar
  66. Horvath S (2013) DNA methylation age of human tissues and cell types. Genome Biology 14(10):3156CrossRefGoogle Scholar
  67. Huang TW, Chen HT, Fujimoto R, Ito K, Wu K, Sato K, et al (2017) (eds). Age estimation from brain MRI images using deep learning. In: Proceedings—international symposium on biomedical imagingGoogle Scholar
  68. Hubbard BM, Anderson JM (1981) Age, senile dementia and ventricular enlargement. J Neurol Neurosurg Psychiatry 44(7):631–635PubMedPubMedCentralCrossRefGoogle Scholar
  69. Irimia A, Torgerson CM, Goh S-YM, Horn JD (2014) Statistical estimation of physiological brain age as a descriptor of senescence rate during adulthood. Brain Imaging Behav 9(4):678–689CrossRefGoogle Scholar
  70. Johansson MM, Marcusson J, Wressle E (2015) Cognitive impairment and its consequences in everyday life: experiences of people with mild cognitive impairment or mild dementia and their relatives. Int Psychogeriatr 27(6):949–958PubMedCrossRefGoogle Scholar
  71. Keenan K, Bartlett TQ, Nijland M, Rodriguez JS, Nathanielsz PW, Zurcher NR (2013) Poor nutrition during pregnancy and lactation negatively affects neurodevelopment of the offspring: evidence from a translational primate model. Am J Clin Nutr 98(2):396–402PubMedPubMedCentralCrossRefGoogle Scholar
  72. Kemper TL (1994) Neuroanatomical and neuropathological changes during aging and dementia. Clinical Neurology of Aging, 2nd edn. Oxford University Press, New York, NY, US, pp 3–67Google Scholar
  73. Khundrakpam BS, Tohka J, Evans AC (2015) Prediction of brain maturity based on cortical thickness at different spatial resolutions. Neuroimage 111:350–359PubMedCrossRefGoogle Scholar
  74. Kikuchi M, Wada Y, Koshino Y, Nanbu Y, Hashimoto T (2000) Effect of normal aging upon interhemispheric EEG coherence: analysis during rest and photic stimulation. Clin Electroencephalogr 31(4):170–174PubMedCrossRefGoogle Scholar
  75. Knopman DS, Jack CR, Wiste HJ, Lundt ES, Weigand SD, Vemuri P et al (2014) 18F-fluorodeoxyglucose positron emission tomography, aging, and apolipoprotein E genotype in cognitively normal persons. Neurobiol Aging 35(9):2096–2106PubMedPubMedCentralCrossRefGoogle Scholar
  76. Kolenic M, Franke K, Hlinka J, Matejka M, Capkova J, Pausova Z et al (2018) Obesity, dyslipidemia and brain age in first-episode psychosis. J Psychiatr Res 99:151–158PubMedCrossRefGoogle Scholar
  77. Kondo C, Ito K, Wu K, Sato K, Taki Y, Fukuda H, et al (2015) An age estimation method using brain local features for T1-weighted images. In: 37th annual international conference of the IEEE engineering in medicine and biology society (EMBC), Milan, 25–29 Aug 2015, pp 666–9Google Scholar
  78. Konukoglu E, Glocker B, Zikic D, Criminisi A (2013) Neighbourhood approximation using randomized forests. Med Image Anal 17(7):790–804PubMedCrossRefGoogle Scholar
  79. Koutsouleris N, Davatzikos C, Borgwardt S, Gaser C, Bottlender R, Frodl T et al (2013) Accelerated brain aging in schizophrenia and beyond: a neuroanatomical marker of psychiatric disorders. Schizophr Bull 40(5):1140–1153PubMedPubMedCentralCrossRefGoogle Scholar
  80. Kwak S, Kim H, Chey J, Youm Y (2018) Feeling how old i am: subjective age is associated with estimated brain age. Frontiers Aging Neurosci 10(168)Google Scholar
  81. Lancaster J, Lorenz R, Leech R, Cole JH (2018) Bayesian optimization for neuroimaging pre-processing in brain age classification and prediction. Frontiers Aging Neurosci 10:28CrossRefGoogle Scholar
  82. Le TT, Kuplicki R, Yeh H-W, Aupperle RL, Khalsa SS, Simmons WK, et al (2018) Effect of ibuprofen on BrainAGE: a randomized, placebo-controlled, dose-response exploratory study. Biol Psychiatry Cogn Neurosci NeuroimagingGoogle Scholar
  83. Leal SL, Yassa MA (2013) Perturbations of neural circuitry in aging, mild cognitive impairment, and Alzheimer’s disease. Ageing Res Rev 12(3):823–831PubMedPubMedCentralCrossRefGoogle Scholar
  84. Lee C, Lopez OL, Becker JT, Raji C, Dai W, Kuller LH et al (2009) Imaging cerebral blood flow in the cognitively normal aging brain with arterial Spin labeling: implications for imaging of neurodegenerative disease. J Neuroimaging 19(4):344–352PubMedPubMedCentralCrossRefGoogle Scholar
  85. Li Y, Liu Y, Wang P, Wang J, Xu S, Qiu M (2017) Dependency criterion based brain pathological age estimation of Alzheimer’s disease patients with MR scans. BioMed Eng OnLine 16(1):50PubMedPubMedCentralCrossRefGoogle Scholar
  86. Li H, Satterthwaite TD, Fan Y (2018) (eds). Brain age prediction based on resting-state functional connectivity patterns using convolutional neural networks. In: IEEE Computer SocietyGoogle Scholar
  87. Liem F, Varoquaux G, Kynast J, Beyer F, Kharabian Masouleh S, Huntenburg JM et al (2017) Predicting brain-age from multimodal imaging data captures cognitive impairment. NeuroImage 148:179–188PubMedCrossRefGoogle Scholar
  88. Lin L, Jin C, Fu Z, Zhang B, Bin G, Wu S (2016) Predicting healthy older adult’s brain age based on structural connectivity networks using artificial neural networks. Comput Methods Programs Biomed 125:8–17PubMedCrossRefGoogle Scholar
  89. Lockhart SN, DeCarli C (2014) Structural imaging measures of brain aging. Neuropsychol Rev 24(3):271–289PubMedPubMedCentralCrossRefGoogle Scholar
  90. Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G (2013) The hallmarks of aging. Cell 153(6):1194–1217PubMedPubMedCentralCrossRefGoogle Scholar
  91. Löwe LC, Gaser C, Franke K (2016) The effect of the APOE genotype on individual BrainAGE in normal aging, Mild cognitive impairment, and Alzheimer’s Disease. PloS one 11(7)PubMedPubMedCentralCrossRefGoogle Scholar
  92. Luders E, Cherbuin N, Gaser C (2016) Estimating brain age using high-resolution pattern recognition: younger brains in long-term meditation practitioners. NeuroImage 134:508–513PubMedCrossRefGoogle Scholar
  93. Lutz W, Sanderson W, Scherbov S (2008) The coming acceleration of global population ageing. Nature 451(7179):716–719PubMedCrossRefGoogle Scholar
  94. Madan CR, Kensinger EA (2018) Predicting age from cortical structure across the lifespan. Eur J Neurosci 47(5):399–416PubMedPubMedCentralCrossRefGoogle Scholar
  95. Marstaller L, Williams M, Rich A, Savage G, Burianová H (2015) Aging and large-scale functional networks: white matter integrity, gray matter volume, and functional connectivity in the resting state. Neuroscience 290:369–378PubMedCrossRefGoogle Scholar
  96. Mattson MP, Arumugam TV (2018) Hallmarks of Brain Aging: Adaptive and Pathological Modification by Metabolic States. Cell Metab 27(6):1176–1199PubMedPubMedCentralCrossRefGoogle Scholar
  97. Miller KL, Alfaro-Almagro F, Bangerter NK, Thomas DL, Yacoub E, Xu J et al (2016) Multimodal population brain imaging in the UK Biobank prospective epidemiological study. Nat Neurosci 19(11):1523–1536PubMedPubMedCentralCrossRefGoogle Scholar
  98. Montagne A, Barnes SR, Sweeney MD, Halliday MR, Sagare AP, Zhao Z et al (2015) Blood-brain barrier breakdown in the aging human hippocampus. Neuron 85(2):296–302PubMedPubMedCentralCrossRefGoogle Scholar
  99. Monté-Rubio GC, Falcón C, Pomarol-Clotet E, Ashburner J (2018) A comparison of various MRI feature types for characterizing whole brain anatomical differences using linear pattern recognition methods. NeuroImage 178:753–768PubMedPubMedCentralCrossRefGoogle Scholar
  100. Murphy DGM, DeCarli C, McIntosh AR, Daly E, Mentis MJ, Pietrini P et al (1996) Sex differences in human brain morphometry and metabolism: an in vivo quantitative magnetic resonance imaging and positron emission tomography study on the effect of aging. Arch Gen Psychiatry 53(7):585–594PubMedCrossRefGoogle Scholar
  101. Mwangi B, Hasan KM, Soares JC (2013) Prediction of individual subject’s age across the human lifespan using diffusion tensor imaging: a machine learning approach. NeuroImage 75:58–67PubMedCrossRefGoogle Scholar
  102. Nenadic I, Dietzek M, Langbein K, Sauer H, Gaser C (2017) BrainAGE score indicates accelerated brain aging in schizophrenia, but not bipolar disorder. Psychiatry Res Neuroimagings 266:86–89CrossRefGoogle Scholar
  103. Pardoe HR, Kuzniecky R (2018) NAPR: a cloud-based framework for neuroanatomical age prediction. Neuroinformatics 16(1):43–49PubMedCrossRefGoogle Scholar
  104. Pardoe HR, Cole JH, Blackmon K, Thesen T, Kuzniecky R (2017) Structural brain changes in medically refractory focal epilepsy resemble premature brain aging. Epilepsy Res 133:28–32PubMedCrossRefGoogle Scholar
  105. Park DC (2009) Reuter-Lorenz P. Aging and neurocognitive scaffolding, Ann Rev Psychol Adapt Brain, pp 173–196Google Scholar
  106. Phillips KA, Bales KL, Capitanio JP, Conley A, Czoty PW, t Hart BA et al (2014) Why primate models matter. Am J Primatol. 76(9):801–27PubMedPubMedCentralCrossRefGoogle Scholar
  107. Ponomareva NV, Andreeva TV, Protasova MS, Shagam LI, Malina DD, Goltsov AY, et al (2017) Quantitative EEG during normal aging: association with the Alzheimer’s disease genetic risk variant in PICALM gene. Neurobiol Aging 51:177.e1–e8PubMedCrossRefGoogle Scholar
  108. Prince MJ, Wu F, Guo Y, Robledo LMG, O’Donnell M, Sullivan R et al (2015) The burden of disease in older people and implications for health policy and practice. Lancet 385(9967):549–562PubMedCrossRefGoogle Scholar
  109. Qiu C, Kivipelto M, von Strauss E (2009) Epidemiology of Alzheimer’s disease: occurrence, determinants, and strategies toward intervention. Dialogues Clin Neurosci 11(2):111–128PubMedPubMedCentralGoogle Scholar
  110. Raz N, Lindenberger U, Rodrigue KM, Kennedy KM, Head D, Williamson A et al (2005) Regional brain changes in aging healthy adults: general trends, individual differences and modifiers. Cereb Cortex 15(11):1676–1689PubMedCrossRefGoogle Scholar
  111. Reeve A, Simcox E, Turnbull D (2014) Ageing and Parkinson’s disease: why is advancing age the biggest risk factor?(). Ageing Res Rev 14(100):19–30PubMedPubMedCentralCrossRefGoogle Scholar
  112. Reyngoudt H, Claeys T, Vlerick L, Verleden S, Acou M, Deblaere K et al (2012) Age-related differences in metabolites in the posterior cingulate cortex and hippocampus of normal ageing brain: a 1H-MRS study. Eur J Radiol 81(3):e223–e231PubMedCrossRefGoogle Scholar
  113. Rodriguez JS, Bartlett TQ, Keenan KE, Nathanielsz PW, Nijland MJ (2012) Sex-dependent cognitive performance in baboon offspring following maternal caloric restriction in pregnancy and lactation. Reprod Sci 19(5):493–504PubMedPubMedCentralCrossRefGoogle Scholar
  114. Rodríguez JJ, Noristani HN, Verkhratsky A (2012) The serotonergic system in ageing and Alzheimer’s disease. Prog Neurobiol 99(1):15–41PubMedCrossRefGoogle Scholar
  115. Rogenmoser L, Kernbach J, Schlaug G, Gaser C (2018) Keeping brains young with making music. Brain Struct Funct 223(1):297–305PubMedCrossRefGoogle Scholar
  116. Ronan L, Alexander-Bloch AF, Wagstyl K, Farooqi S, Brayne C, Tyler LK et al (2016) Obesity associated with increased brain age from midlife. Neurobiol Aging 47:63–70PubMedPubMedCentralCrossRefGoogle Scholar
  117. Sala-Llonch R, Bartrés-Faz D, Junqué C (2015) Reorganization of brain networks in aging: a review of functional connectivity studies. Frontiers Psychol 6:663CrossRefGoogle Scholar
  118. Salthouse TA (2010) Selective review of cognitive aging. J Int Neuropsych Soc 16(5):754–760CrossRefGoogle Scholar
  119. Savjani RR, Taylor BA, Acion L, Wilde EA, Jorge RE (2017) Accelerated changes in cortical thickness measurements with age in military service members with traumatic brain injury. J Neurotrauma 34(22):3107–3116PubMedCrossRefGoogle Scholar
  120. Scheller E, Schumacher LV, Peter J, Lahr J, Wehrle J, Kaller CP, et al (2018) Brain aging and APOE ε4 interact to reveal potential neuronal compensation in healthy older adults. Frontiers Aging Neurosci 10:74Google Scholar
  121. Schnack HG, Haren NEMV, Nieuwenhuis M, Pol HEH, Cahn W, Kahn RS (2016) Accelerated brain aging in schizophrenia: a longitudinal pattern recognition study. Am J Psychiat 173(6):607–16PubMedCrossRefGoogle Scholar
  122. Schuitemaker A, van der Doef TF, Boellaard R, van der Flier WM, Yaqub M, Windhorst AD et al (2012) Microglial activation in healthy aging. Neurobiol Aging 33(6):1067–1072PubMedCrossRefGoogle Scholar
  123. Smith SM, Fox PT, Miller KL, Glahn DC, Fox PM, Mackay CE et al (2009) Correspondence of the brain’s functional architecture during activation and rest. Proc Natl Acad Sci USA 106(31):13040–13045PubMedCrossRefGoogle Scholar
  124. Song SK, Yoshino J, Le TQ, Lin SJ, Sun SW, Cross AH et al (2005) Demyelination increases radial diffusivity in corpus callosum of mouse brain. NeuroImage 26(1):132–140PubMedCrossRefGoogle Scholar
  125. Soreq L, Rose J, Soreq E, Hardy J, Trabzuni D, Cookson MR et al (2017) Major shifts in glial regional identity are a transcriptional hallmark of human brain aging. Cell Reports 18(2):557–570PubMedPubMedCentralCrossRefGoogle Scholar
  126. Sprott RL (2010) Biomarkers of aging and disease: introduction and definitions. Exp Gerontol 45(1):2–4PubMedCrossRefGoogle Scholar
  127. Steffener J, Habeck C, O’Shea D, Razlighi Q, Bherer L, Stern Y (2016) Differences between chronological and brain age are related to education and self-reported physical activity. Neurobiol Aging 40:138–144PubMedPubMedCentralCrossRefGoogle Scholar
  128. Storsve AB, Fjell AM, Tamnes CK, Westlye LT, Overbye K, Aasland HW et al (2014) Differential longitudinal changes in cortical thickness, surface area and volume across the adult life span: Regions of accelerating and decelerating change. J Neurosci 34(25):8488–8498PubMedPubMedCentralCrossRefGoogle Scholar
  129. Su L, Wang L, Hu D (2013) Predicting the age of healthy adults from structural MRI by sparse representation. In: Yang J, Fang F, Sun C (eds) Intelligent science and intelligent data engineering IScIDE 2012. Springer, Berlin, Heidelberg, pp 271–279CrossRefGoogle Scholar
  130. Sun SW, Song SK, Harms MP, Lin SJ, Holtzman DM, Merchant KM et al (2005) Detection of age-dependent brain injury in a mouse model of brain amyloidosis associated with Alzheimer’s disease using magnetic resonance diffusion tensor imaging. Exp Neurol 191(1):77–85PubMedCrossRefGoogle Scholar
  131. Tsvetanov KA, Henson RNA, Tyler LK, Razi A, Geerligs L, Ham TE et al (2016) Extrinsic and intrinsic brain network connectivity maintains cognition across the lifespan despite accelerated decay of regional brain activation. J Neurosci 36(11):3115–3126PubMedPubMedCentralCrossRefGoogle Scholar
  132. Valizadeh SA, Hänggi J, Mérillat S, Jäncke L (2017) Age prediction on the basis of brain anatomical measures. Hum Brain Mapp 38(2):997–1008PubMedCrossRefPubMedCentralGoogle Scholar
  133. VandeBerg JL, Williams-Blangero S, Tardif SD (eds) (2009) The baboon in biomedical research. Springer, New York, NYGoogle Scholar
  134. Varikuti DP, Genon S, Sotiras A, Schwender H, Hoffstaedter F, Patil KR et al (2018) Evaluation of non-negative matrix factorization of grey matter in age prediction. NeuroImage 173:394–410PubMedPubMedCentralCrossRefGoogle Scholar
  135. Walhovd KB, Westlye LT, Amlien I, Espeseth T, Reinvang I, Raz N et al (2011) Consistent neuroanatomical age-related volume differences across multiple samples. Neurobiol Aging 32(5):916–932PubMedCrossRefPubMedCentralGoogle Scholar
  136. Wang B, Pham TD (2011) MRI-based age prediction using hidden Markov models. J Neurosci Methods 199(1):140–145PubMedCrossRefPubMedCentralGoogle Scholar
  137. Wang L, Su L, Shen H, Hu D (2012) Decoding lifespan changes of the human brain using resting-state functional connectivity MRI. PloS one 7(8)PubMedPubMedCentralCrossRefGoogle Scholar
  138. Wang J, Li W, Miao W, Dai D, Hua J, He H (2014) Age estimation using cortical surface pattern combining thickness with curvatures. Med Biol Eng Compu 52(4):331–341CrossRefGoogle Scholar
  139. Wardlaw JM, Smith EE, Biessels GJ, Cordonnier C, Fazekas F, Frayne R et al (2013) Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol 12(8):822–838PubMedPubMedCentralCrossRefGoogle Scholar
  140. Yoshizawa H, Gazes Y, Stern Y, Miyata Y, Uchiyama S (2014) Characterizing the normative profile of 18F-FDG PET brain imaging: sex difference, aging effect, and cognitive reserve. Psychiatry Res Neuroimaging 221(1):78–85CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • James H. Cole
    • 1
    Email author
  • Katja Franke
    • 2
  • Nicolas Cherbuin
    • 3
  1. 1.Department of Neuroimaging, Institute of Psychiatry, Psychology & NeuroscienceKing’s College LondonLondonUK
  2. 2.Structural Brain Mapping GroupUniversity Hospital JenaJenaGermany
  3. 3.Centre for Research on Ageing, Health and WellbeingAustralian National UniversityCanberraAustralia

Personalised recommendations