Advertisement

Are There Reliable Biomarkers for Immunosenescence and Inflammaging?

  • Tamas FulopEmail author
  • Alan Cohen
  • Glenn Wong
  • Jacek M. Witkowski
  • Anis Larbi
Chapter
Part of the Healthy Ageing and Longevity book series (HAL, volume 10)

Abstract

Aging is accompanied by changes in the immune system, culminating in immunosenescence on one hand and inflammaging on the other. Science is striving for biomarkers to capture these heterogenous complex processes. However, when the basic interpretation does not capture correctly the underlying phenomenon, the biomarkers may not be accurate either. Thus, we tried to give a new interpretation of the immune changes with aging as mostly adaptative (and even partially beneficial) in physiological circumstances. So we need new biomarkers which could capture these novel concepts this new reality concomitantly to the old ones. Finding and applying them would in our opinion result in a better modulation of the immune changes in elderly subjects.

Keywords

Inflammaging Age related diseases Innate immune system Adaptive immune system Trained innate immunity Biomarkers Immunadaptation 

Notes

Acknowledgements

This work was supported by grants from Canadian Institutes of Health Research (CIHR) (No. 106634), the Société des médecins de l’Université de Sherbrooke and the Research Center on Aging of the CIUSSS-CHUS, Sherbrooke, by the Polish Ministry of Science and Higher Education statutory grant 02-0058/07/262 to JMW and by Agency for Science Technology and Research (A*STAR JCO 1434m00115 and SRIS SIG18026) to AL.

References

  1. Almeida L, Lochner M, Berod L, Sparwasser T (2016) Metabolic pathways in T cell activation and lineage differentiation. Semin Immunol 28:514–524PubMedCrossRefGoogle Scholar
  2. Appay V, Sauce D (2014) Naive T cells: the crux of cellular immune aging? Exp Gerontol 54:90–93PubMedCrossRefGoogle Scholar
  3. Appay V, Dunbar PR, Callan M, Klenerman P, Gillespie GM, Papagno L, Ogg GS, King A, Lechner F, Spina CA, Little S, Havlir DV, Richman DD, Gruener N, Pape G, Waters A, Easterbrook P, Salio M, Cerundolo V, McMichael AJ, Rowland-Jones SL (2002) Memory CD8+T cells vary in differentiation phenotype in different persistent virus infections. Nat Med 8:379–85PubMedCrossRefGoogle Scholar
  4. Arai Y, Martin-Ruiz CM, Takayama M, Abe Y, Takebayashi T, Koyasu S, Suematsu M, Hirose N, von Zglinicki T (2015) Inflammation, but not telomere length, predicts successful ageing at extreme old age: a longitudinal study of semi-supercentenarians. EBioMedicine 2:1549–1558PubMedPubMedCentralCrossRefGoogle Scholar
  5. Baëhl S, Garneau H, Lorrain D, Viens I, Svotelis A, Lord JM, Cabana F, Larbi A, Dupuis G, Fülöp T (2016) Alterations in monocyte phenotypes and functions after a hip fracture in elderly individuals: a 6-month longitudinal study. Gerontology 62:477–490PubMedCrossRefGoogle Scholar
  6. Bajwa M, Vita S, Vescovini R, Larsen M, Sansoni P, Terrazzini N, Caserta S, Thomas D, Davies KA, Smith H, Kern F (2017) CMV-specific T-cell responses at older ages: broad responses with a large central memory component maybe key to longterm survival. J Infect Dis 215:1212–1220PubMedPubMedCentralCrossRefGoogle Scholar
  7. Bandaranayake T, Shaw AC (2016) Host resistance and immune aging. Clin Geriatr Med 32:415–432PubMedCrossRefGoogle Scholar
  8. Biagi E, Candela M, Turroni S, Garagnani P, Franceschi C, Brigidi P (2013) Ageing and gut microbes: perspectives for health maintenance and longevity. Pharmacol Res 69:11–20CrossRefGoogle Scholar
  9. Biomarkers Definitions Working Group (2001) Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther 69:89–95CrossRefGoogle Scholar
  10. Biswas R, Mukherjee S, Sinha D, Ghosh AK, Biswas T (2014) Culture-differentiated CD8(+) T cells acquire innate memory-like traits and respond to a pathogen-associated molecule. Immunol Cell Biol 92:368–376PubMedCrossRefGoogle Scholar
  11. Bucci L, Ostan R, Giampieri E, Cevenini E, Pini E, Scurti M, Vescovini R, Sansoni P, Caruso C, Mari D, Ronchetti F, Borghi MO, Ogliari G, Grossi C, Capri M, Salvioli S, Castellani G, Franceschi C, Monti D (2014) Immune parameters identify Italian centenarians with a longer five-year survival independent of their health and functional status. Exp Gerontol 54:14–20PubMedCrossRefGoogle Scholar
  12. Caligiuri MA (2008) Human natural killer cells. Blood 112:461–469PubMedPubMedCentralCrossRefGoogle Scholar
  13. Callender LA, Carroll EC, Beal RWJ, Chambers ES, Nourshargh S, Akbar AN, Henson SM (2018) Human CD8+EMRA T cells display a senescence-associated secretory phenotype regulated by p 38 MAPK. Aging Cell. 17(1)PubMedCentralCrossRefPubMedGoogle Scholar
  14. Camous X, Pera A, Solana R, Larbi A (2012) NK cells in healthy aging and age-associated diseases. J Biomed Biotechnol 2012:195956PubMedPubMedCentralCrossRefGoogle Scholar
  15. Camous X, Visan L, Ying CTT, Abel B, Nyunt MSZ, Narang V, Poidinger M, Carre C, Sesay S, Bosco N, Burdin N, Tambyah PA, Pin NT, Larbi A (2018) Healthy elderly Singaporeans show no age-related humoral hyporesponsiveness nor diminished plasmablast generation in response to influenza vaccine. Immun Ageing 15:28PubMedPubMedCentralCrossRefGoogle Scholar
  16. Chavez-Galan L, Arenas-Del Angel MC, Zenteno E, Chavez R, Lascurain R (2009) Cell death mechanisms induced by cytotoxic lymphocytes. Cell Mol Immunol 6:15–25PubMedPubMedCentralCrossRefGoogle Scholar
  17. Declerck K, Vanden Berghe W (2018) Back to the future: epigenetic clock plasticity towards healthy aging. Mech Ageing Dev 174:18–29PubMedCrossRefGoogle Scholar
  18. Della Chiesa M, Marcenaro E, Sivori S, Carlomagno S, Pesce S, Moretta A (2014) Human NK cell response to pathogens. Semin Immunol 26:152–160PubMedCrossRefGoogle Scholar
  19. Derhovanessian E, Maier AB, Hähnel K, Zelba H, de Craen AJ, Roelofs H, Slagboom EP, Westendorp RG, Pawelec G (2013) Lower proportion of naïve peripheral CD8+T cells and an unopposed pro-inflammatory response to human Cytomegalovirus proteins in vitro are associated with longer survival in very elderly people. Age (Dordr) 35:1387–1399CrossRefGoogle Scholar
  20. Douziech N, Seres I, Larbi A, Szikszay E, Roy PM, Arcand M, Dupuis G, Fulop T (2002) Modulation of human lymphocyte proliferative response with aging. Exp Gerontol 37:369–387PubMedCrossRefGoogle Scholar
  21. Dunston CR, Griffiths HR (2010) The effect of ageing on macrophage Toll-like receptor-mediated responses in the fight against pathogens. Clin Exp Immunol 161:407–416PubMedPubMedCentralCrossRefGoogle Scholar
  22. Effros RB, Dagarag M, Spaulding C, Man J (2005) The role of CD8+T-cell replicative senescence in human aging. Immunol Rev 205:147–157PubMedCrossRefGoogle Scholar
  23. Fang C, Xu H, Guo S, Mertens-Talcott SU, Sun Y (2018) Ghrelin signaling in immunometabolism and inflamm-aging. Adv Exp Med Biol 1090:165–182PubMedCrossRefGoogle Scholar
  24. Ferrucci L, Fabbri E (2018) Inflammageing: chronic inflammation in ageing, cardiovascular disease, and frailty. Nat Rev Cardiol 15:505–522PubMedPubMedCentralCrossRefGoogle Scholar
  25. Fortin CF, Larbi A, Lesur O, Douziech N, Fulop T Jr (2006) Impairment of SHP-1 down-regulation in the lipid rafts of human neutrophils under GM-CSF stimulation contributes to their age-related, altered functions. J Leukoc Biol 79:1061–1072PubMedCrossRefGoogle Scholar
  26. Fortin CF, McDonald PP, Lesur O, Fulop T (2008) Aging and neutrophils: there is still much to do. Rejuvenation Res 11:873–882PubMedCrossRefGoogle Scholar
  27. Franceschi C, Bonafè M, Valensin S, Olivieri F, De Luca M, Ottaviani E, De Benedictis G (2000) Inflamm-aging. An evolutionary perspective on immunosenescence. Ann N Y Acad Sci 908:244–254PubMedCrossRefGoogle Scholar
  28. Franceschi C, Garagnani P, Vitale G, Capri M, Salvioli S (2017a) Inflammaging and ‘Garb-aging’, trends endocrinol. Metab 28:199–212Google Scholar
  29. Franceschi C, Salvioli S, Garagnani P, Monti D, de Eguileor M, Capri M (2017b) Immunobiography and the heterogeneity of immune responses in the elderly: a focus on inflammaging and trained immunity. Front Immunol 8:982PubMedPubMedCentralCrossRefGoogle Scholar
  30. Franceschi C, Garagnani P, Morsiani C, Conte M, Santoro A, Grignolio A, Monti D, Capri M, Salvioli S (2018) The continuum of aging and age-related diseases: common mechanisms but different rates. Front Med (Lausanne) 5:61CrossRefGoogle Scholar
  31. Frasca D, Blomberg BB, Paganelli R (2017) Aging, obesity, and inflammatory age-related diseases. Front Immunol 8:1745PubMedPubMedCentralCrossRefGoogle Scholar
  32. Fukata M, Vamadevan AS, Abreu MT (2009) Toll-like receptors (TLRs) and nod-like receptors (NLRs) in inflammatory disorders. Semin Immunol 21:242–253PubMedCrossRefGoogle Scholar
  33. Fulop T, Larbi A, Douziech N, Fortin C, Guérard KP, Lesur O, Khalil A, Dupuis G (2004) Signal transduction and functional changes in neutrophils with aging. Aging Cell 3:217–226PubMedCrossRefGoogle Scholar
  34. Fulop T, Larbi A, Wikby A, Mocchegiani E, Hirokawa K, Pawelec G (2005) Dysregulation of T-cell function in the elderly: scientific basis and clinical implications. Drugs Aging 22:589–603PubMedCrossRefGoogle Scholar
  35. Fulop T, Larbi A, Witkowski JM, Kotb R, Hirokawa K, Pawelec G (2013b) Immunosenescence and cancer. Crit Rev Oncog 18:489–513PubMedCrossRefGoogle Scholar
  36. Fulop T, Le Page A, Fortin C, Witkowski JM, Dupuis G, Larbi A (2014) Cellular signaling in the aging immune system. Curr Opin Immunol 29:105–111PubMedCrossRefGoogle Scholar
  37. Fulop T, Dupuis G, Baehl S, Le Page A, Bourgade K, Frost E, Witkowski JM, Pawelec G, Larbi A, Cunnane S (2016) From inflamm-aging to immune-paralysis: a slippery slope during aging for immune-adaptation. Biogerontology 17:147–157CrossRefGoogle Scholar
  38. Fulop T, Larbi A, Dupuis G, Le Page A, Frost EH, Cohen AA, Witkowski JM, Franceschi C (2018a) Immunosenescence and inflamm-aging as two sides of the same coin: friends or foes? Front Immunol 8:1960PubMedPubMedCentralCrossRefGoogle Scholar
  39. Fulop T, Witkowski JM, Olivieri F, Larbi A (2018b) The integration of inflammaging in age-related diseases. Semin Immunol 40:17–35PubMedCrossRefGoogle Scholar
  40. Fülöp T Jr, Fouquet C, Allaire P, Perrin N, Lacombe G, Stankova J, Rola-Pleszczynski M, Gagné D, Wagner JR, Khalil A, Dupuis G (1997) Changes in apoptosis of human polymorphonuclear granulocytes with aging. Mech Ageing Dev 96:15–34PubMedCrossRefGoogle Scholar
  41. Fülöp T, Larbi A, Pawelec G (2013a) Human T cell aging and the impact of persistent viral infections. Front Immunol 4:271Google Scholar
  42. Gardner JK, Mamotte CDS, Jackaman C, Nelson DJ (2017) Modulation of dendritic cell and T cell cross-talk during aging: the potential role of checkpoint inhibitory molecules. Ageing Res Rev 38:40–51PubMedCrossRefGoogle Scholar
  43. Garg SK, Delaney C, Shi H, Yung R (2014) Changes in adipose tissue macrophages and T cells during aging. Crit Rev Immunol 34:1–14PubMedPubMedCentralCrossRefGoogle Scholar
  44. Ginhoux F, Jung S (2014) Monocytes and macrophages: developmental pathways and tissue homeostasis. Nat Rev Immunol 14:392–404PubMedCrossRefGoogle Scholar
  45. Goronzy JJ, Weyand CM (2013) Understanding immunosenescence to improve responses to vaccines. Nat Immunol 14:428–436PubMedPubMedCentralCrossRefGoogle Scholar
  46. Goronzy JJ, Fujii H, Weyand CM (2006) Telomeres, immune aging and autoimmunity. Exp Gerontol 41:246–251PubMedCrossRefGoogle Scholar
  47. Goronzy JJ, Fang F, Cavanagh MM, Qi Q, Weyand CM (2015) Naïve T cell maintenance and function in human ageing. J Immunol 194:4073e80PubMedCrossRefGoogle Scholar
  48. Gounder SS, Abdullah BJJ, Radzuanb NEIBM, Zain FDBM, Sait NBM, Chua C, Subramani B (2018) Effect of aging on NK cell population and their proliferation at ex vivo culture condition. Anal Cell Pathol (Amst) 2018:7871814Google Scholar
  49. Guzik TJ, Cosentino F (2018) Epigenetics and immunometabolism in diabetes and aging. Antioxid Redox Signal 29:257–274PubMedPubMedCentralCrossRefGoogle Scholar
  50. Henson SM, Lanna A, Riddell NE, Franzese O, Macaulay R, Griffiths SJ, Puleston DJ, Watson AS, Simon AK, Tooze SA, Akbar AN (2014) p38 signaling inhibits mTORC1-independent autophagy in senescent human CD8+T cells. J Clin Invest 124:4004–4016PubMedPubMedCentralCrossRefGoogle Scholar
  51. Horvath S, Pirazzini C, Bacalini MC, Gentilini D, Di Blasio AM, Delledonne M, Mari D, Arosio B, Monti D, Passarino G, De Rango F, D’Aquila P, Giuliani C, Marasco E, Collino S, Descombes P, Garagnani P, Franceschi C (2015) Decreased epigenetic age of PBMCs from Italian semi-supercentenarians and their offspring. Aging (Albany NY) 7:1159–1170CrossRefGoogle Scholar
  52. Hsu HC, Scott DK, Zhang P, Zhou J, Yang P, Wu Q, Schroeder HW Jr, Gerald LB, Ravussin E, Jazwinski SM, Mountz JD (2006) Louisiana healthy aging study. CD8 T-cell immune phenotype of successful aging. Mech Ageing Dev 127(3):231–239PubMedCrossRefGoogle Scholar
  53. Ishikawa N, Nakamura K, Izumiyama-Shimomura N, Aida J, Matsuda Y, Arai T, Takubo K (2016) Changes of telomere status with aging: an update. Geriatr Gerontol Int 16(Suppl 1):30–42PubMedCrossRefGoogle Scholar
  54. Jackaman C, Tomay F, Duong L, Abdol Razak NB, Pixley FJ, Metharom P, Nelson DJ (2017) Aging and cancer: the role of macrophages and neutrophils. Ageing Res Rev 36:105–116PubMedCrossRefGoogle Scholar
  55. Jagger A, Shimojima Y, Goronzy JJ, Weyand CM (2014) Regulatory T cells and the immune aging process: a mini-review. Gerontology 60:130–137CrossRefGoogle Scholar
  56. Jergović M, Smithey NJ, Nikolich-Žugich J (2018) Intrinsic and extrinsic contributors to defective CD8+T cell responses with aging. Exp Gerontol 105:140–145PubMedCrossRefGoogle Scholar
  57. Johnson SC, Sangesland M, Kaeberlein M, Rabinovitch PS (2015) Modulating mTOR in aging and health. Interdiscip Top Gerontol. 40:107–27Google Scholar
  58. Johnstone J, Parsons R, Botelho F, Millar J, McNeil S, Fulop T, McElhaney J, Andrew MK, Walter SD, Devereaux PJ, Malekesmaeili M, Brinkman RR, Mahony J, Bramson J, Loeb M (2014) Immune biomarkers predictive of respiratory viral infection in elderly nursing home residents. PLoS ONE 9:e108481PubMedPubMedCentralCrossRefGoogle Scholar
  59. Justo-Junior AS, Villarejos LM, Lima XTV, Nadruz W Jr, Sposito AC, Mamoni RL, Abdalla R, Fernandes JL, Oliveira RTD, Blotta MHSL (2018) Monocytes of patients with unstable angina express high levels of chemokine and pattern-recognition receptors. Cytokine pii: S1043–4666(18):30256–4Google Scholar
  60. Jylhävä J, Pedersen NL, Hägg S (2017) Biological age predictors. EBioMedicine 21:29–36PubMedPubMedCentralCrossRefGoogle Scholar
  61. Kaszubowska L (2008) Telomere shortening and ageing of the immune system. J Physiol Pharmacol 59(Suppl 9):169–186PubMedGoogle Scholar
  62. Khanfer R, Carroll D, Lord JM, Phillips AC (2012) Reduced neutrophil superoxide production among healthy older adults in response to acute psychological stress. Int J Psychophysiol 86:238–244PubMedCrossRefGoogle Scholar
  63. Klein Geltink RI, Kyle RI, Pearce EL (2018) Unraveling the complex interplay between T cell metabolism and function. Annu Rev Immunol 36:461–488PubMedCentralCrossRefPubMedGoogle Scholar
  64. Kleinnijenhuis J, Quintin J, Preijers F, Joosten LA, Ifrim DC, Saeed S, Jacobs C, van Loenhout J, de Jong D, Stunnenberg HG, Xavier RJ, van der Meer JW, van Crevel R, Netea MG (2012) Bacille Calmette-Guerin induces NOD2-dependent nonspecific protection from reinfection via epigenetic reprogramming of monocytes. Proc Natl Acad Sci U S A 109:17537–17542CrossRefGoogle Scholar
  65. Kolaczkowska E, Kubes P (2013) Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol 13:159–175PubMedCrossRefGoogle Scholar
  66. Krzewski K, Coligan JE (2012) Human NK cell lytic granules and regulation of their exocytosis. Front Immunol 3:335Google Scholar
  67. Kverneland AH, Streitz M, Geissler E, Hutchinson J, Vogt K, Boës D, Niemann N, Pedersen AE, Schlickeiser S, Sawitzki B (2016) Age and gender leucocytes variances and references values generated using the standardized ONE-Study protocol. Cytometry A. 89:543–564PubMedCrossRefGoogle Scholar
  68. Lal H, Cunningham AL, Godeaux O, Chlibek R, Diez-Domingo J, Hwang SJ, Levin MJ, McElhaney JE, Poder A, Puig-Barberà J, Vesikari T, Watanabe D, Weckx L, Zahaf T, Heineman TC (2015) ZOE-50 study group, efficacy of an adjuvanted herpes zoster subunit vaccine in older adults. N Engl J Med 372:2087–2096PubMedCrossRefGoogle Scholar
  69. Lara J, Cooper R, Nissan J, Ginty AT, Khaw KT, Deary IJ, Lord JM, Kuh D, Mathers JC (2015) A proposed panel of biomarkers of healthy ageing. BMC Med 13:222PubMedPubMedCentralCrossRefGoogle Scholar
  70. Larbi A, Fulop T (2014) From “truly naïve” to “exhausted senescent” T cells: when markers predict functionality. Cytometry A 85:25–35PubMedCrossRefPubMedCentralGoogle Scholar
  71. Larbi A, Dupuis G, Khalil A, Douziech N, Fortin C, Fülöp T (2006) Differential role of lipid rafts in the functions of CD4+and CD8+human T lymphocytes with aging. Cell Signal 18:1017–1030PubMedCrossRefPubMedCentralGoogle Scholar
  72. Le Page A, Fortin C, Garneau H, Allard N, Tsvetkova K, Tan CT, Larbi A, Dupuis G, Fülöp T (2014) Downregulation of inhibitory SRC homology 2 domain-containing phosphatase-1 (SHP-1) leads to recovery of T cell responses in elderly. Cell Commun Signal 12:2PubMedPubMedCentralCrossRefGoogle Scholar
  73. Le Page A, Bourgade K, Lamoureux J, Frost E, Pawelec G, Larbi A, Witkowski JM, Dupuis G, Fülöp T (2015) NK cells are activated in amnestic mild cognitive impairment but not in mild Alzheimer’s disease patients. J Alzheimers Dis 46:93–107PubMedCrossRefPubMedCentralGoogle Scholar
  74. Long EO, Kim HS, Liu D, Peterson ME, Rajagopalan S (2013) Controlling natural killer cell responses: integration of signals for activation and inhibition. Annu Rev Immunol 31:227–258PubMedCrossRefPubMedCentralGoogle Scholar
  75. Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G (2013) The hallmarks of aging. Cell 153:1194–1217PubMedPubMedCentralCrossRefGoogle Scholar
  76. McElhaney JE, Garneau H, Camous X, Dupuis G, Pawelec G, Baehl S, Tessier D, Frost EH, Frasca D, Larbi A, Fulop T (2015) Predictors of the antibody response to influenza vaccination in older adults with type 2 diabetes. BMJ Open Diabetes Res Care 3:e000140PubMedPubMedCentralCrossRefGoogle Scholar
  77. Monti D, Ostan R, Borelli V, Castellani G, Franceschi C (2017) Inflammaging and human longevity in the omics era. Mech Ageing Dev 165(Pt B):129–138PubMedCrossRefGoogle Scholar
  78. Morrisette-Thomas V, Cohen AA, Fülöp T, Riesco É, Legault V, Li Q, Milot E, Dusseault-Bélanger F, Ferrucci L (2014) Inflamm-aging does not simply reflect increases in pro-inflammatory markers. Mech Ageing Dev 139:49–57PubMedPubMedCentralCrossRefGoogle Scholar
  79. Müller L, Fülöp T, Pawelec G (2013) Immunosenescence in vertebrates and invertebrates. Immun Ageing 10:12Google Scholar
  80. Muraille E, Goriely S (2017) The nonspecific face of adaptive immunity. Curr Opin Immunol 48:38–43PubMedCrossRefGoogle Scholar
  81. Netea MG, van der Meer JW (2017) Trained immunity: an ancient way of remembering. Cell Host Microbe 21:297–300PubMedCrossRefGoogle Scholar
  82. Nyugen J, Agrawal S, Gollapudi S, Gupta S (2010) Impaired functions of peripheral blood monocyte subpopulations in aged humans. J Clin Immunol 30:806–813PubMedPubMedCentralCrossRefGoogle Scholar
  83. Olivieri F, Procopio AD, Montgomery RR (2014) Effect of aging on microRNAs and regulation of pathogen recognition receptors. Curr Opin Immunol 29:29–37PubMedCrossRefGoogle Scholar
  84. Olivieri F, Albertini MC, Orciani M, Ceka A, Cricca M, Procopio AD, Bonafè M (2015) DNA damage response (DDR) and senescence: shuttled inflammamiRNAs on the stage of inflamm-aging. Oncotarget 6:35509–35521PubMedPubMedCentralGoogle Scholar
  85. Panda A, Arjona A, Sapey E, Bai F, Fikrig E, Montgomery RR, Lord JM, Shaw AC (2009) Human innate immunosenescence: causes and consequences for immunity in old age. Trends Immunol 30:325–333PubMedPubMedCentralCrossRefGoogle Scholar
  86. Park HJ, Lee A, Lee JI, Park SH, Ha SJ, Jung KC (2016) Effect of IL-4 on the development and function of memory-like CD8 T cells in the peripheral lymphoid tissues. Immune Netw 16:126–133PubMedPubMedCentralCrossRefGoogle Scholar
  87. Pawelec G (2012) Hallmarks of human “immunosenescence”: adaptation or dysregulation? Immun Ageing 9:15PubMedPubMedCentralCrossRefGoogle Scholar
  88. Pawelec G (2014) Immunosenenescence: role of cytomegalovirus. Exp Gerontol 54:1–5PubMedCrossRefGoogle Scholar
  89. Pawelec G (2018a) Age and immunity: what is “immunosenescence”? Exp Gerontol 105:4–9PubMedCrossRefGoogle Scholar
  90. Pawelec G (2018b) Immune signatures associated with mortality differ in elderly populations from different birth cohorts and countries even within northern Europe. Mech Ageing Dev pii: S0047–6374(18):30054–XGoogle Scholar
  91. Pawelec G, Derhovanessian E, Larbi A, Strindhall J, Wikby A (2009) Cytomegalovirus and human immunosenescence. Rev Med Virol 9:47–56CrossRefGoogle Scholar
  92. Pinti M, Appay V, Campisi J, Frasca D, Fülöp T, Sauce D, Larbi A, Weinberger B, Cossarizza A (2016) Aging of the immune system: focus on inflammationand vaccination. Eur J Immunol 46:2286–2301PubMedPubMedCentralCrossRefGoogle Scholar
  93. Plonquet A, Bastuji-Garin S, Tahmasebi F, Brisacier C, Ledudal K, Farcet J, Paillaud E (2011) Immune risk phenotype is associated with nosocomial lung infections in elderly in-patients. Immun Ageing 8:8PubMedPubMedCentralCrossRefGoogle Scholar
  94. Porcheray F, Viaud S, Rimaniol AC, Leone C, Samah B, Dereuddre-Bosquet N, Dormont D, Gras G (2005) Macrophage activation switching: an asset for the resolution of inflammation. Clin Exp Immunol 142:481–489PubMedPubMedCentralGoogle Scholar
  95. Prattichizzo F, Micolucci L, Cricca M, De Carolis S, Mensà E, Ceriello A, Procopio AD, Bonafè M, Olivieri F (2017) Exosome-based immunomodulation during aging: a nano-perspective on inflamm-aging. Mech Ageing Dev 168:44–53PubMedCrossRefGoogle Scholar
  96. Prince LR, Whyte MK, Sabroe I, Parker LC (2011) The role of TLRs in neutrophil activation. Curr Opin Pharmacol 11:397–403PubMedCrossRefGoogle Scholar
  97. Raulet DH, Guerra N (2009) Oncogenic stress sensed by the immune system: role of natural killer cell receptors. Nat Rev Immunol 9:568–580PubMedPubMedCentralCrossRefGoogle Scholar
  98. Raynor J, Lages CS, Shehata H, Hildeman DA, Chougnet CA (2012) Homeostasis and function of regulatory T cells in aging. Curr Opin Immunol 24:482–487PubMedPubMedCentralCrossRefGoogle Scholar
  99. Robb MA, McInnes PM, Califf RM (2016) Biomarkers and surrogate endpoints developing common terminology and definition. JAMA 315:1107–1108PubMedCrossRefGoogle Scholar
  100. Rodier F, Campisi J (2011) Four faces of cellular senescence. J Cell Biol 192:547–556PubMedPubMedCentralCrossRefGoogle Scholar
  101. Rubino G, Bulati M, Aiello A, Aprile S, GambinoCM Gervasi F, Caruso C, Accardi G (2018) Sicilian centenarian offspring are more resistant to immune ageing. Aging Clin Exp Res 31(1):125–133PubMedCrossRefGoogle Scholar
  102. Saavedra D, García B, Lorenzo-Luaces P, González A, Popa X, Fuentes KP, Mazorra Z, Crombet T, Neninger E, Lage A (2016) Biomarkers related to immunosenescence: relationships with therapy and survival in lung cancer patients. Cancer Immunol Immunother 65:37–45PubMedCrossRefGoogle Scholar
  103. Salvioli S, Capri M, Bucci L, Lanni L, Racchi M, Uberti D, Memo M, Mari D, Govoni S, Franceschi C (2009) Why do centenarians escape or postpone cancer? The role of IGF-1, inflammation and p53, Cancer Immunol. Immunother 58:1909–1917CrossRefGoogle Scholar
  104. Sanada F, Taniyama Y, Muratsu J, Otsu R, Shimizu H, Rakugi H, Morishita R (2018) Source of chronic inflammation in aging. Front Cardiovasc Med 5:12Google Scholar
  105. Shah R, Patel T, Freedman JE (2018) Circulating extracellular vesicles in human disease. N Engl J Med 379:958–966PubMedCrossRefGoogle Scholar
  106. Shaw AC, Panda A, Joshi SR, Qian F, Allore HG, Montgomery RR (2011) Dysregulation of human Toll-like receptor function in aging. Ageing Res Rev 10:346–353PubMedCrossRefGoogle Scholar
  107. Shen-Orr SS, Furman D, Kidd BA, Hadad F, Lovelace F, Huang YW, Rosenberg-Hasson Y, Mackey S, Grisar FA, Pickman Y, Maecker HT, Chien YH, Dekker CL, Wu JC, Butte AJ, Davis MM (2016) Defective signaling in the JAK-STAT pathway tracks with chronic inflammation and cardiovascular risk in aging humans. Cell Syst 3(4):374–384PubMedPubMedCentralCrossRefGoogle Scholar
  108. Sizzano F, Collino S, Cominetti O, Monti D, Garagnani P, Ostan R, Pirazzini C, Bacalini MG, Mari D, Passarino G, Franceschi C, Palini A (2018) Evaluation of lymphocyte response to the induced oxidative stress in a cohort of ageing subjects, including semisupercentenarians and their offspring. Mediators Inflamm 2018:7109312PubMedPubMedCentralCrossRefGoogle Scholar
  109. Solana R, Tarazona R, Gayoso I, Lesur O, Dupuis G, Fulop T (2012) Innate immunosenescence: effect of aging on cells and receptors of the innate immune system in humans. Semin Immunol 24:331–341PubMedCrossRefGoogle Scholar
  110. Solana R, Campos C, Pera A, Tarazona R (2014) Shaping of NK cell subsets by aging. Curr Opin Immunol 29:56–61PubMedCrossRefGoogle Scholar
  111. Sotgia S, Zinellu A, Mangoni AA, Serra R, Pintus G, Caruso C, Deiana L, Carru C (2017) Cellular immune activation in Sardinian middle-aged, older adults and centenarians. Exp Gerontol 99:133–137PubMedCrossRefPubMedCentralGoogle Scholar
  112. Storci G, De Carolis S, Olivieri F, Bonafè M (2018) Changes in the biochemical taste of cytoplasmic and cell-free DNA are major fuels for inflamm-aging. Semin Immunol. pii: S1044–5323(18):30070–8Google Scholar
  113. Takasugi M (2018) Emerging roles of extracellular vesicles in cellular senescence and aging. Aging Cell 17(2):e12734PubMedCentralCrossRefGoogle Scholar
  114. Tarazona R, Campos C, Pera A, Sanchez-Correa B, Solana R (2015) Flow cytometry analysis of NK Cell phenotype and function in aging. Methods Mol Biol 1343:9–18PubMedCrossRefPubMedCentralGoogle Scholar
  115. Thevaranjan N, Puchta A, Schulz C, Naidoo A, Szamosi JC, Verschoor CP, Loukov D, Schenck LP, Jury J, Foley KP, Schertzer JD, Larché MJ, Davidson DJ, Verdú EF, Surette MG, Bowdish DME (2017) Age-associated microbial dysbiosis promotes intestinal permeability, systemic inflammation, and macrophage dysfunction. Cell Host Microbe 21(455–466):e4Google Scholar
  116. Thomas CJ, Schroder K (2013) Pattern recognition receptor function in neutrophils. Trends Immunol 34:317–328PubMedCrossRefPubMedCentralGoogle Scholar
  117. Tieri P, Grignolio A, Zaikin A, Mishto M, Remondini D, Castellani GC, Franceschi C (2010) Network, degeneracy and bow tie. Integrating paradigms and architectures to grasp the complexity of the immune system. Theor Biol Med Model 7:32Google Scholar
  118. Torres KCL, Rezende VB, Lima-Silva ML, Santos LJS, Costa CG, Mambrini JVM, Peixoto SV, Tarazona-Santos E, Martins Filho OA, Lima-Costa MF, Teixeira-Carvalho A (2018) Immune senescence and biomarkers profile of Bambuí aged population-based cohort. Exp Gerontol 103:47–56PubMedCrossRefGoogle Scholar
  119. Turner MD, Nedjai B, Hurst T, Pennington DJ (2014) Cytokines and chemokines: at the crossroads of cell signalling and inflammatory disease. Biochim Biophys Acta 1843:2563–2582PubMedCrossRefGoogle Scholar
  120. Van den Bossche J, O’Neill LA, Menon D (2017) Macrophage immunometabolism: where are we (going)? Trends Immunol 38:395–406PubMedCrossRefGoogle Scholar
  121. Ventura MT, Casciaro M, Gangemi S, Buquicchio R (2017) Immunosenescence in aging: between immune cells depletion and cytokines up-regulation. Clin Mol Allergy 15:21PubMedPubMedCentralCrossRefGoogle Scholar
  122. Vivier E, Tomasello E, Baratin M, Walzer T, Ugolini S (2008) Functions of natural killer cells. Nat Immunol 9:503–510PubMedCrossRefGoogle Scholar
  123. Wang Y, Whittall T, Neil S, Britton G, Mistry M, Rerks-Ngarm S, Pitisuttithum P, Kaewkungwal J, Nitayaphan S, Yu X, Sato A, O’Connell RJ, Michael NL, Robb ML, Kim JH, Lehner TA (2017) novel mechanism linking memory stem cells with innate immunity in protection against HIV-1 infection. Sci Rep 7:1057PubMedPubMedCentralCrossRefGoogle Scholar
  124. Weltevrede M, Eilers R, de Melker HE, van Baarle D (2106) Cytomegalovirus persistence and T-cell immunosenescence in people aged fifty and older: a systematic review. Exp Gerontol 77:87–95PubMedCrossRefGoogle Scholar
  125. Wherry EJ, Kurachi M (2015) Molecular and cellular insights into T cell exhaustion. Nat Rev Immunol 15:486–499PubMedPubMedCentralCrossRefGoogle Scholar
  126. Wikby A, Ferguson F, Forsey R, Thompson J, Strindhall J, Löfgren S, Nilsson BO, Ernerudh J, Pawelec G, Johansson B (2005) An immune risk phenotype, cognitive impairment, and survival in very late life: impact of allostatic load in Swedish octogenarian and nonagenarian humans. J Gerontol A Biol Sci Med Sci 60:556–565CrossRefGoogle Scholar
  127. Xu W, Larbi A (2017) Markers of T cell senescence in humans. Int J Mol Sci 18:E1742PubMedCrossRefGoogle Scholar
  128. Xu Q, Choksi S, Qu J, Jang J, Choe M, Banfi B, Engelhardt JF, Liu ZG (2016) NADPH oxidases are essential for macrophage differentiation. J Biol Chem 291:20030–41PubMedCrossRefGoogle Scholar
  129. Yanes RE, Gustafson CE, Weyand CE, Goronzy CM (2017) Lymphocyte generation and population homeostasis throughout life. Semin Hematol 54:33e8PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Tamas Fulop
    • 1
    Email author
  • Alan Cohen
    • 2
  • Glenn Wong
    • 3
  • Jacek M. Witkowski
    • 4
  • Anis Larbi
    • 3
    • 5
  1. 1.Research Center on Aging, Graduate Program in Immunology, Faculty of Medicine and Health Sciences, Department of MedicineUniversity of SherbrookeSherbrookeCanada
  2. 2.Research Center on Aging, Faculty of Medicine and Health Sciences, Department of Family MedicineUniversity of SherbrookeSherbrookeCanada
  3. 3.Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR)SingaporeSingapore
  4. 4.Department of PathophysiologyMedical University of GdanskGdanskPoland
  5. 5.Department of Biology, Faculty of ScienceUniversity Tunis El ManarTunisTunisia

Personalised recommendations