Advertisement

Epigenetic Biomarkers of Aging

  • Morgan E. LevineEmail author
Chapter
Part of the Healthy Ageing and Longevity book series (HAL, volume 10)

Abstract

The development of valid and reliable biomarkers of aging has become a major initiative in Geroscience research. Our ability to distinguish biological from chronological age will enable identification of accelerated versus decelerated agers, and could also provide a valuable tool for assessing intervention efficacy. While various types of data can be used to quantify “biological age”, perhaps the most successful applications have been using DNA methylation data. To date nearly a dozen different “epigenetic clocks” have been develop—most of which track age in a variety of tissues and cell types. Nevertheless, while they seem to share some characteristics, such as robust age prediction, their associations with age-related outcomes vary substantially. In moving forward, the utility of such measures will depend on our understanding of (1) why specific CpG dinucleotides exhibit such consistent DNAm changes over time, (2) what pathways or hallmarks are driven and/or reflected by alterations of DNAm, and (3) perhaps most importantly, whether these patterns of aging are amenable to intervention.

Keywords

DNA methylation Biomarkers of aging Biological age Epigenetics Machine learning Complexity 

References

  1. Ahuja N, Issa JP (2000) Aging, methylation and cancer. Histol Histopathol 15:835–842.  https://doi.org/10.14670/hh-15.835CrossRefPubMedGoogle Scholar
  2. Ambatipudi S et al (2017) DNA methylome analysis identifies accelerated epigenetic ageing associated with postmenopausal breast cancer susceptibility. Eur J Cancer 75:299–307.  https://doi.org/10.1016/j.ejca.2017.01.014CrossRefPubMedPubMedCentralGoogle Scholar
  3. Aunan JR, Cho WC, Soreide K (2017) The biology of aging and cancer: a brief overview of shared and divergent molecular hallmarks. Aging Dis 8:628–642.  https://doi.org/10.14336/AD.2017.0103CrossRefPubMedPubMedCentralGoogle Scholar
  4. Belsky DW et al (2018) Eleven telomere, epigenetic clock, and biomarker-composite quantifications of biological aging: do they measure the same thing? Am J Epidemiol 187:1220–1230.  https://doi.org/10.1093/aje/kwx346CrossRefPubMedGoogle Scholar
  5. Bocklandt S et al (2011) Epigenetic predictor of age. PLoS One 6.  https://doi.org/10.1371/journal.pone.0014821CrossRefGoogle Scholar
  6. Boltzmann L (1878) Zur Theorie der elastischen Nachwirkung. Ann Phys 241:430–432.  https://doi.org/10.1002/andp.18782411107CrossRefGoogle Scholar
  7. Bortz WM 2nd (1986) Aging as entropy. Exp Gerontol 21:321–328CrossRefGoogle Scholar
  8. Chen J et al (2012) Maternal deprivation in rats is associated with corticotrophin-releasing hormone (CRH) promoter hypomethylation and enhances CRH transcriptional responses to stress in adulthood. J Neuroendocrinol 24:1055–1064.  https://doi.org/10.1111/j.1365-2826.2012.02306.xCrossRefPubMedPubMedCentralGoogle Scholar
  9. Chen BH et al (2016) DNA methylation-based measures of biological age: meta-analysis predicting time to death. Aging (Albany NY) 8:1844–1865.  https://doi.org/10.18632/aging.101020CrossRefGoogle Scholar
  10. de Magalhães JP (2012) Programmatic features of aging originating in development: aging mechanisms beyond molecular damage? FASEB J 26:4821–4826.  https://doi.org/10.1096/fj.12-210872CrossRefPubMedPubMedCentralGoogle Scholar
  11. Ferrucci L, Levine Morgan E, Kuo P-L, Simonsick Eleanor M (2018) Time and the metrics of aging. Circ Res 123:740–744.  https://doi.org/10.1161/CIRCRESAHA.118.312816CrossRefPubMedGoogle Scholar
  12. Florath I, Butterbach K, Müller H, Bewerunge-Hudler M, Brenner H (2013) Cross-sectional and longitudinal changes in DNA methylation with age: an epigenome-wide analysis revealing over 60 novel age-associated CpG sites. Doi: D—NLM: PMC3919014; EDAT—2013/10/29 06:00; MHDA—2014/10/16 06:00; CRDT—2013/10/29 06:00; PHST—2013/10/29 06:00 [entrez]; PHST—2013/10/29 06:00 [pubmed]; PHST—2014/10/16 06:00 [medline]; AID—ddt531 [pii]; AID— https://doi.org/10.1093/hmg/ddt531 [doi]; PST—ppublish
  13. Frenk S, Houseley J (2018) Gene expression hallmarks of cellular ageing. Biogerontology 19:547–566.  https://doi.org/10.1007/s10522-018-9750-zCrossRefPubMedPubMedCentralGoogle Scholar
  14. Hannum G et al (2013) Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol Cell 49:359–367.  https://doi.org/10.1016/j.molcel.2012.10.016CrossRefPubMedGoogle Scholar
  15. Hayflick L (2007) Entropy explains aging, genetic determinism explains longevity, and undefined terminology explains misunderstanding both. PLoS Genet 3:e220.  https://doi.org/10.1371/journal.pgen.0030220CrossRefPubMedPubMedCentralGoogle Scholar
  16. Hofstatter EW et al (2018) Increased epigenetic age in normal breast tissue from luminal breast cancer patients. Clin Epigenet 10:112.  https://doi.org/10.1186/s13148-018-0534-8CrossRefGoogle Scholar
  17. Horvath S (2013) DNA methylation age of human tissues and cell types. Genome Biol 14:R115.  https://doi.org/10.1186/gb-2013-14-10-r115CrossRefPubMedPubMedCentralGoogle Scholar
  18. Horvath S, Levine AJ (2015) HIV-1 infection accelerates age according to the epigenetic clock. J Infect Dis 212:1563–1573.  https://doi.org/10.1093/infdis/jiv277CrossRefPubMedPubMedCentralGoogle Scholar
  19. Horvath S, Raj K (2018) DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat Rev Genet 19:371–384.  https://doi.org/10.1038/s41576-018-0004-3CrossRefPubMedGoogle Scholar
  20. Horvath S et al (2015a) Accelerated epigenetic aging in down syndrome. Aging Cell 14.  https://doi.org/10.1111/acel.12325CrossRefGoogle Scholar
  21. Horvath S et al (2015b) Decreased epigenetic age of PBMCs from Italian semi-supercentenarians and their offspring. Aging (Albany NY) 7.  https://doi.org/10.18632/aging.100861CrossRefGoogle Scholar
  22. Horvath S et al (2018) Epigenetic clock for skin and blood cells applied to Hutchinson Gilford Progeria Syndrome and ex vivo studies. Aging (Albany NY) 10:1758–1775.  https://doi.org/10.18632/aging.101508CrossRefGoogle Scholar
  23. Hudgins AD et al (2018) Age- and tissue-specific expression of senescence biomarkers in mice. Front Genet 9:59–59.  https://doi.org/10.3389/fgene.2018.00059
  24. Jabbari K, Bernardi G (2004) Cytosine methylation and CpG, TpG (CpA) and TpA frequencies. Gene 333:143–149.  https://doi.org/10.1016/j.gene.2004.02.043CrossRefPubMedGoogle Scholar
  25. Jenkinson G, Pujadas E, Goutsias J, Feinberg AP (2017) Potential energy landscapes identify the information-theoretic nature of the epigenome. Nat Genet 49:719–729.  https://doi.org/10.1038/ng.3811CrossRefPubMedPubMedCentralGoogle Scholar
  26. Joehanes R et al (2016) Epigenetic signatures of cigarette smoking. Circ Cardiovasc Genet 9:436–447.  https://doi.org/10.1161/CIRCGENETICS.116.001506CrossRefPubMedPubMedCentralGoogle Scholar
  27. Johansson A, Enroth S, Gyllensten U (2013) Continuous aging of the human DNA methylome throughout the human lifespan. Doi: D—NLM: PMC3695075; EDAT—2013/07/05 06:00; MHDA—2013/07/05 06:01; CRDT—2013/07/05 06:00; PHST—2013/01/09 00:00 [received]; PHST—2013/05/16 00:00 [accepted]; PHST—2013/07/05 06:00 [entrez]; PHST—2013/07/05 06:00 [pubmed]; PHST—2013/07/05 06:01 [medline]; AID— https://doi.org/10.1371/journal.pone.0067378 [doi]; AID—PONE-D-13-02458 [pii]; PST—epublish
  28. Jylhävä J, Pedersen NL, Hägg S (2017) Biological age predictors. EBioMedicine 21:29–36.  https://doi.org/10.1016/j.ebiom.2017.03.046CrossRefPubMedPubMedCentralGoogle Scholar
  29. Kannel WB, McGee D, Gordon T (1976) A general cardiovascular risk profile: the Framingham Study. Am J Cardiol 38:46–51CrossRefGoogle Scholar
  30. Kennedy BK et al (2014) Geroscience: linking aging to chronic disease. Cell 159:709–713.  https://doi.org/10.1016/j.cell.2014.10.039CrossRefPubMedPubMedCentralGoogle Scholar
  31. Kirkwood TBL (1977) Evolution of ageing. Nature 270:301.  https://doi.org/10.1038/270301a0CrossRefPubMedGoogle Scholar
  32. Klutstein M, Nejman D, Greenfield R, Cedar H (2016) DNA methylation in cancer and aging. Can Res 76:3446–3450.  https://doi.org/10.1158/0008-5472.Can-15-3278CrossRefGoogle Scholar
  33. Kowald A, Kirkwood TBL (2016) Can aging be programmed? A critical literature review. Aging Cell 15:986–998.  https://doi.org/10.1111/acel.12510CrossRefPubMedPubMedCentralGoogle Scholar
  34. Kumsta R et al (2016) Severe psychosocial deprivation in early childhood is associated with increased DNA methylation across a region spanning the transcription start site of CYP2E1. Transl Psychiatry 6:e830.  https://doi.org/10.1038/tp.2016.95CrossRefPubMedPubMedCentralGoogle Scholar
  35. Kurdyukov S, Bullock M (2016) DNA methylation analysis: choosing the right method. Biology 5:3.  https://doi.org/10.3390/biology5010003CrossRefPubMedCentralGoogle Scholar
  36. Levine ME et al (2015a) DNA methylation age of blood predicts future onset of lung cancer in the women’s health initiative. Aging (Albany NY) 7:690–700.  https://doi.org/10.18632/aging.100809CrossRefGoogle Scholar
  37. Levine M, Lu A, Bennett D, Horvath S (2015b) Epigenetic age of the pre-frontal cortex is associated with neuritic plaques, amyloid load, and Alzheimer’s disease related cognitive functioning. Aging (Albany NY)Google Scholar
  38. Levine ME et al (2016) Menopause accelerates biological aging. Proc Natl Acad Sci U S A 113:9327–9332.  https://doi.org/10.1073/pnas.1604558113CrossRefPubMedPubMedCentralGoogle Scholar
  39. Levine ME et al (2018) An epigenetic biomarker of aging for lifespan and healthspan. Aging (Albany NY) 10:573–591.  https://doi.org/10.18632/aging.101414CrossRefGoogle Scholar
  40. Lin Q, Wagner W (2015) Epigenetic aging signatures are coherently modified in cancer. PLoS Genet 11:e1005334.  https://doi.org/10.1371/journal.pgen.1005334CrossRefPubMedPubMedCentralGoogle Scholar
  41. Maegawa S et al (2017) Caloric restriction delays age-related methylation drift. Nat Commun 8:539.  https://doi.org/10.1038/s41467-017-00607-3CrossRefPubMedPubMedCentralGoogle Scholar
  42. Marioni R et al (2015a) DNA methylation age of blood predicts all-cause mortality in later life. Genome Biol 16:25CrossRefGoogle Scholar
  43. Marioni RE et al (2015b) The epigenetic clock is correlated with physical and cognitive fitness in the Lothian Birth Cohort 1936. Int J Epidemiol 44:1388–1396.  https://doi.org/10.1093/ije/dyu277CrossRefPubMedPubMedCentralGoogle Scholar
  44. Rakyan VK et al (2010) Human aging-associated DNA hypermethylation occurs preferentially at bivalent chromatin domains. Genome Res 20:434–439.  https://doi.org/10.1101/gr.103101.109CrossRefPubMedPubMedCentralGoogle Scholar
  45. Rockwood K, Mitnitski AB, MacKnight C (2002) Some mathematical models of frailty and their clinical implications. Rev Clin Gerontol 12:109–117.  https://doi.org/10.1017/S0959259802012236CrossRefGoogle Scholar
  46. Seeman TE, McEwen BS, Rowe JW, Singer BH (2001) Allostatic load as a marker of cumulative biological risk: MacArthur studies of successful aging. Proc Natl Acad Sci U S A 98:4770–4775.  https://doi.org/10.1073/pnas.081072698CrossRefPubMedPubMedCentralGoogle Scholar
  47. Skuladottir GV, Nilsson EK, Mwinyi J, Schiöth HB (2016) One-night sleep deprivation induces changes in the DNA methylation and serum activity indices of stearoyl-CoA desaturase in young healthy men. Lipids Health Dis 15:137.  https://doi.org/10.1186/s12944-016-0309-1CrossRefPubMedPubMedCentralGoogle Scholar
  48. Smith ZD, Meissner A (2013) DNA methylation: roles in mammalian development. Nat Rev Genet 14:204.  https://doi.org/10.1038/nrg3354CrossRefPubMedGoogle Scholar
  49. St-Cyr S, McGowan PO (2017) Adaptation or pathology? The role of prenatal stressor type and intensity in the developmental programing of adult phenotype. Neurotoxicol Teratol.  https://doi.org/10.1016/j.ntt.2017.12.003CrossRefGoogle Scholar
  50. Teschendorff AE et al (2010) Age-dependent DNA methylation of genes that are suppressed in stem cells is a hallmark of cancer. Genome Res 20:440–446CrossRefGoogle Scholar
  51. Tomasetti C, Vogelstein B (2015) Variation in cancer risk among tissues can be explained by the number of stem cell divisions. Science 347:78–81.  https://doi.org/10.1126/science.1260825CrossRefPubMedPubMedCentralGoogle Scholar
  52. Vidal-Bralo L, Lopez-Golan Y, Gonzalez A (2016) Simplified assay for epigenetic age estimation in whole blood of adults. Front Genet 7:126.  https://doi.org/10.3389/fgene.2016.00126
  53. Weidner CI et al (2014) Aging of blood can be tracked by DNA methylation changes at just three CpG sites. Genome Biol 15:R24.  https://doi.org/10.1186/gb-2014-15-2-r24CrossRefPubMedPubMedCentralGoogle Scholar
  54. Yang Z et al (2016) Correlation of an epigenetic mitotic clock with cancer risk. Genome Biol 17:205.  https://doi.org/10.1186/s13059-016-1064-3CrossRefPubMedPubMedCentralGoogle Scholar
  55. Zhang Y et al (2017) DNA methylation signatures in peripheral blood strongly predict all-cause mortality. Nat Commun 8:14617.  https://doi.org/10.1038/ncomms14617CrossRefPubMedPubMedCentralGoogle Scholar
  56. Zheng Y et al (2016) Blood epigenetic age may predict cancer incidence and mortality. EBioMedicine 5:68–73.  https://doi.org/10.1016/j.ebiom.2016.02.008CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of PathologyYale School of MedicineNew HavenUSA

Personalised recommendations