Advertisement

Optimal Multi-broadcast with Beeps Using Group Testing

  • Joffroy Beauquier
  • Janna Burman
  • Peter Davies
  • Fabien DufoulonEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11639)

Abstract

The beeping model is an extremely restrictive broadcast communication model that relies only on carrier sensing. In this model, we obtain time-optimal and deterministic solutions for the fundamental communication task of multi-broadcast. The proposed solutions are completely uniform, i.e., independent of the network and problem parameters.

We improve on previous results for multi-broadcast by giving efficiently constructible solutions, that is, with local computation cost polynomial in the identifiers’ range. The originality of our approach lies in the use of (combinatorial) group testing strategies, originally developed in the centralized context.

Keywords

Beeping model Group testing Multi-broadcast 

References

  1. 1.
    Afek, Y., Alon, N., Bar-Joseph, Z., Cornejo, A., Haeupler, B., Kuhn, F.: Beeping a maximal independent set. Distrib. Comput. 26(4), 195–208 (2013)CrossRefGoogle Scholar
  2. 2.
    Bar-Yehuda, R., Israeli, A., Itai, A.: Multiple communication in multihop radio networks. SIAM J. Comput. 22(4), 875–887 (1993)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bonis, A., Gasieniec, L., Vaccaro, U.: Optimal two-stage algorithms for group testing problems. SIAM J. Comput. 34(5), 1253–1270 (2005)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Cheraghchi, M.: Noise-resilient group testing: limitations and constructions. Discrete Appl. Math. 161(1), 81–95 (2013)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Chlebus, B.S., Kowalski, D.R., Pelc, A., Rokicki, M.A.: Efficient distributed communication in ad-hoc radio networks. In: ICALP, pp. 613–624 (2011)Google Scholar
  6. 6.
    Cicalese, F., Vaccaro, U.: Superselectors: efficient constructions and applications. In: ESA, pp. 207–218 (2010)Google Scholar
  7. 7.
    Cornejo, A., Kuhn, F.: Deploying wireless networks with beeps. In: DISC, pp. 148–162 (2010)Google Scholar
  8. 8.
    Czumaj, A., Davies, P.: Communicating with beeps. In: OPODIS, pp. 1–16 (2016)Google Scholar
  9. 9.
    Czumaj, A., Davies, P.: Deterministic communication in radio networks. SIAM J. Comput. 47(1), 218–240 (2018)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Czumaj, A., Davies, P.: Communicating with beeps. J. Parallel Distrib. Comput. (2019)Google Scholar
  11. 11.
    Dorfman, R.: The detection of defective members of large populations. Ann. Math. Statist. 14(4), 436–440 (1943)CrossRefGoogle Scholar
  12. 12.
    Du, D.Z., Hwang, F.K.: Combinatorial Group Testing and Its Applications. World Scientific, Singapore (1993)CrossRefGoogle Scholar
  13. 13.
    Dufoulon, F., Burman, J., Beauquier, J.: Beeping a deterministic time-optimal leader election. In: DISC, pp. 20:1–20:17 (2018)Google Scholar
  14. 14.
    D’yachkov, A., Rykov, V., Rashad, A.: Superimposed distance codes. Prob. Control Inf. Theory 18(4), 237–250 (1989)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Ghaffari, M., Haeupler, B.: Near optimal leader election in multi-hop radio networks. In: SODA, pp. 748–766 (2013)Google Scholar
  16. 16.
    Hwang, F.K.: A method for detecting all defective members in a population by group testing. J. Am. Stat. Assoc. 67(339), 605–608 (1972)CrossRefGoogle Scholar
  17. 17.
    Indyk, P., Ngo, H.Q., Rudra, A.: Efficiently decodable non-adaptive group testing. In: SODA, pp. 1126–1142 (2010)Google Scholar
  18. 18.
    Li, C.H.: A sequential method for screening experimental variables. J. Am. Stat. Assoc. 57(298), 455–477 (1962)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Luo, J., Guo, D.: Neighbor discovery in wireless ad hoc networks based on group testing. In: 46th Annual Allerton Conference on Communication, Control, and Computing, pp. 791–797 (2008)Google Scholar
  20. 20.
    Ngo, H.Q., Porat, E., Rudra, A.: Efficiently decodable error-correcting list disjunct matrices and applications. In: ICALP, pp. 557–568 (2011)CrossRefGoogle Scholar
  21. 21.
    Porat, E., Rothschild, A.: Explicit nonadaptive combinatorial group testing schemes. IEEE Trans. Inf. Theory 57(12), 7982–7989 (2011)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Joffroy Beauquier
    • 1
  • Janna Burman
    • 1
  • Peter Davies
    • 2
  • Fabien Dufoulon
    • 1
    Email author
  1. 1.LRI, CNRS UMR 8623Université Paris-Sud, Université Paris-SaclayOrsayFrance
  2. 2.University of WarwickCoventryUK

Personalised recommendations