Advertisement

Near-Gathering of Energy-Constrained Mobile Agents

  • Andreas BärtschiEmail author
  • Evangelos Bampas
  • Jérémie Chalopin
  • Shantanu Das
  • Christina Karousatou
  • Matúš Mihalák
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11639)

Abstract

We study the task of gathering k energy-constrained mobile agents in an undirected edge-weighted graph. Each agent is initially placed on an arbitrary node and has a limited amount of energy, which constrains the distance it can move. Since this may render gathering at a single point impossible, we study three variants of near-gathering:

The goal is to move the agents into a configuration that minimizes either (i) the radius of a ball containing all agents, (ii) the maximum distance between any two agents, or (iii) the average distance between the agents. We prove that (i) is polynomial-time solvable, (ii) has a polynomial-time 2-approximation with a matching NP-hardness lower bound, while (iii) admits a polynomial-time \(2(1-\tfrac{1}{k})\)-approximation, but no FPTAS, unless \(\text {P}=\text {NP}\). We extend some of our results to additive approximation.

Keywords

Mobile agents Power-aware robots Limited battery Gathering Graph algorithms Approximation Computational complexity 

References

  1. 1.
    Alpern, S., Gal, S.: The Theory of Search Games and Rendezvous. Kluwer, Boston (2003)zbMATHGoogle Scholar
  2. 2.
    Anaya, J., Chalopin, J., Czyzowicz, J., Labourel, A., Pelc, A., Vaxès, Y.: Convergecast and broadcast by power-aware mobile agents. Algorithmica 74(1), 117–155 (2016)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Awerbuch, B., Betke, M., Rivest, R.L., Singh, M.: Piecemeal graph exploration by a mobile robot. Inf. Comput. 152(2), 155–172 (1999)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Bampas, E., Das, S., Dereniowski, D., Karousatou, C.: Collaborative delivery by energy-sharing low-power mobile robots. In: ALGOSENSORS 2017, pp. 1–12 (2017)Google Scholar
  5. 5.
    Bärtschi, A., et al.: Collaborative delivery with energy-constrained mobile robots. In: SIROCCO 2016, pp. 258–274 (2016)Google Scholar
  6. 6.
    Bärtschi, A., et al.: Collaborative delivery with energy-constrained mobile robots. In: Theoretical Computer Science, SIROCCO 2016 (2017)Google Scholar
  7. 7.
    Betke, M., Rivest, R.L., Singh, M.: Piecemeal learning of an unknown environment. Mach. Learn. 18(2), 231–254 (1995)Google Scholar
  8. 8.
    Bilò, D., Disser, Y., Gualà, L., Mihalák, M., Proietti, G., Widmayer, P.: Polygon-constrained motion planning problems. In: ALGOSENSORS 2013, pp. 67–82 (2013)Google Scholar
  9. 9.
    Chalopin, J., Das, S., Mihalák, M., Penna, P., Widmayer, P.: Data delivery by energy-constrained mobile agents. In: ALGOSENSORS 2013, pp. 111–122 (2013)Google Scholar
  10. 10.
    Chalopin, J., Jacob, R., Mihalák, M., Widmayer, P.: Data delivery by energy-constrained mobile agents on a line. In: ICALP 2014, pp. 423–434 (2014)Google Scholar
  11. 11.
    Cicerone, S., Stefano, G.D., Navarra, A.: Gathering of robots on meeting-points: feasibility and optimal resolution algorithms. Distrib. Comput. 31(1), 1–50 (2018)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Cieliebak, M., Flocchini, P., Prencipe, G., Santoro, N.: Distributed computing by mobile robots: gathering. SIAM J. Comput. 41(4), 829–879 (2012)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Cohen, R., Peleg, D.: Convergence properties of the gravitational algorithm in asynchronous robot systems. SIAM J. Comput. 34, 1516–1528 (2005)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Czyzowicz, J., Diks, K., Moussi, J., Rytter, W.: Communication problems for mobile agents exchanging energy. In: SIROCCO 2016 (2016)zbMATHGoogle Scholar
  15. 15.
    Czyzowicz, J., Labourel, A., Pelc, A.: How to meet asynchronously (almost) everywhere. ACM Trans. Algorithms 8(4), 37:1–37:14 (2012)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Das, S., Dereniowski, D., Karousatou, C.: Collaborative exploration by energy-constrained mobile robots. In: SIROCCO 2015, pp. 357–369 (2015)Google Scholar
  17. 17.
    Demaine, E.D., Hajiaghayi, M., Mahini, H., Sayedi-Roshkhar, A.S., Oveisgharan, S., Zadimoghaddam, M.: Minimizing movement. ACM Trans. Algorithms 5(3), 30:1–30:30 (2009)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Demaine, E.D., Hajiaghayi, M., Marx, D.: Minimizing movement: fixed-parameter tractability. ACM Trans. Algorithms 11(2), 14:1–14:29 (2014)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Dereniowski, D., Disser, Y., Kosowski, A., Pająk, D., Uznański, P.: Fast collaborative graph exploration. Inf. Comput. 243, 37–49 (2015)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Duncan, C.A., Kobourov, S.G., Kumar, V.S.A.: Optimal constrained graph exploration. ACM Trans. Algorithms 2(3), 380–402 (2006)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Dynia, M., Korzeniowski, M., Schindelhauer, C.: Power-aware collective tree exploration. In: ARCS 2006, pp. 341–351 (2006)Google Scholar
  22. 22.
    Dynia, M., Łopuszański, J., Schindelhauer, C.: Why robots need maps. In: SIROCCO 2007, pp. 41–50 (2007)Google Scholar
  23. 23.
    Flocchini, P., Prencipe, G., Santoro, N. (eds.): Distributed Computing by Mobile Entities, Current Research in Moving and Computing. Lecture Notes in Computer Science, vol. 11340. Springer, Switzerland (2019).  https://doi.org/10.1007/978-3-030-11072-7
  24. 24.
    Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Gathering of asynchronous robots with limited visibility. Theoret. Comput. Sci. 337(1–3), 147–168 (2005)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Fraigniaud, P., Gasieniec, L., Kowalski, D.R., Pelc, A.: Collective tree exploration. Networks 48(3), 166–177 (2006)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Lin, J., Morse, A.S., Anderson, B.D.O.: The multi-agent rendezvous problem (parts 1 and 2). SIAM J. Control Optim. 46(6), 2096–2147 (2007)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Pagli, L., Prencipe, G., Viglietta, G.: Getting close without touching: near-gathering for autonomous mobile robots. Distrib. Comput. 28(5), 333–349 (2015)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Pelc, A.: Deterministic rendezvous in networks: a comprehensive survey. Networks 59(3), 331–347 (2012)MathSciNetGoogle Scholar

Copyright information

© This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2019

Authors and Affiliations

  • Andreas Bärtschi
    • 1
    Email author
  • Evangelos Bampas
    • 2
  • Jérémie Chalopin
    • 3
  • Shantanu Das
    • 3
  • Christina Karousatou
    • 4
  • Matúš Mihalák
    • 5
  1. 1.Center for Nonlinear StudiesLos Alamos National LaboratoryLos AlamosUSA
  2. 2.Laboratoire de Recherche en InformatiqueUniversité Paris-SudOrsay CedexFrance
  3. 3.CNRSAix-Marseille Université and Université de Toulon, LISToulonFrance
  4. 4.Department of MathematicsTU DarmstadtDarmstadtGermany
  5. 5.Department of Data Science and Knowledge EngineeringMaastricht UniversityMaastrichtThe Netherlands

Personalised recommendations