Advertisement

Visiting Infinitely Often the Unit Interval While Minimizing the Idle Time of High Priority Segments

  • Oscar Morales-PonceEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11639)

Abstract

Consider a region that require to be protected from unauthorized penetrations. A team of robots can patrol (perpetually move along) the border of the region looking for intruders. The problem is known as the patrolling problem and has been extensively studied.

References

  1. 1.
    Chuangpishit, H., Czyzowicz, J., Gąsieniec, L., Georgiou, K., Jurdziński, T., Kranakis, E.: Patrolling a path connecting a set of points with unbalanced frequencies of visits. In: Tjoa, A.M., Bellatreche, L., Biffl, S., van Leeuwen, J., Wiedermann, J. (eds.) SOFSEM 2018. LNCS, vol. 10706, pp. 367–380. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-73117-9_26CrossRefGoogle Scholar
  2. 2.
    Collins, A., et al.: Optimal patrolling of fragmented boundaries. In: Proceedings of the Twenty-Fifth Annual ACM Symposium on Parallelism in Algorithms and Architectures, pp. 241–250. ACM (2013)Google Scholar
  3. 3.
    Czyzowicz, J., Gąsieniec, L., Kosowski, A., Kranakis, E.: Boundary patrolling by mobile agents with distinct maximal speeds. In: Demetrescu, C., Halldórsson, M.M. (eds.) ESA 2011. LNCS, vol. 6942, pp. 701–712. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-23719-5_59CrossRefGoogle Scholar
  4. 4.
    Czyzowicz, J., Gasieniec, L., Kosowski, A., Kranakis, E., Krizanc, D., Taleb, N.: When patrolmen become corrupted: monitoring a graph using faulty mobile robots. Algorithmica 79(3), 925–940 (2017)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Czyzowicz, J., Kosowski, A., Kranakis, E., Taleb, N.: Patrolling trees with mobile robots. In: Cuppens, F., Wang, L., Cuppens-Boulahia, N., Tawbi, N., Garcia-Alfaro, J. (eds.) FPS 2016. LNCS, vol. 10128, pp. 331–344. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-51966-1_22CrossRefGoogle Scholar
  6. 6.
    Gąsieniec, L., Klasing, R., Levcopoulos, C., Lingas, A., Min, J., Radzik, T.: Bamboo garden trimming problem (perpetual maintenance of machines with different attendance urgency factors). In: Steffen, B., Baier, C., van den Brand, M., Eder, J., Hinchey, M., Margaria, T. (eds.) SOFSEM 2017. LNCS, vol. 10139, pp. 229–240. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-51963-0_18CrossRefzbMATHGoogle Scholar
  7. 7.
    Kawamura, A., Kobayashi, Y.: Fence patrolling by mobile agents with distinct speeds. In: Chao, K.-M., Hsu, T., Lee, D.-T. (eds.) ISAAC 2012. LNCS, vol. 7676, pp. 598–608. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-35261-4_62CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Computer Engineering and Computer ScienceCalifornia State University Long BeachLong BeachUSA

Personalised recommendations