Advertisement

Locality of Not-so-Weak Coloring

  • Alkida BalliuEmail author
  • Juho Hirvonen
  • Christoph Lenzen
  • Dennis Olivetti
  • Jukka Suomela
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11639)

Abstract

Many graph problems are locally checkable: a solution is globally feasible if it looks valid in all constant-radius neighborhoods. This idea is formalized in the concept of locally checkable labelings (LCLs), introduced by Naor and Stockmeyer (1995). Recently, Chang et al. (2016) showed that in bounded-degree graphs, every LCL problem belongs to one of the following classes:
  • “Easy”: solvable in \(O(\log ^* n)\) rounds with both deterministic and randomized distributed algorithms.

  • “Hard”: requires at least \(\varOmega (\log n)\) rounds with deterministic and \(\varOmega (\log \log n)\) rounds with randomized distributed algorithms.

Hence for any parameterized LCL problem, when we move from local problems towards global problems, there is some point at which complexity suddenly jumps from easy to hard. For example, for vertex coloring in d-regular graphs it is now known that this jump is at precisely d colors: coloring with \(d+1\) colors is easy, while coloring with d colors is hard.

However, it is currently poorly understood where this jump takes place when one looks at defective colorings. To study this question, we define k-partial c-coloring as follows: nodes are labeled with numbers between 1 and c, and every node is incident to at least k properly colored edges.

It is known that 1-partial 2-coloring (a.k.a. weak 2-coloring) is easy for any \(d \ge 1\). As our main result, we show that k-partial 2-coloring becomes hard as soon as \(k \ge 2\), no matter how large a d we have.

We also show that this is fundamentally different from k-partial 3-coloring: no matter which \(k \ge 3\) we choose, the problem is always hard for \(d = k\) but it becomes easy when \(d \gg k\). The same was known previously for partial c-coloring with \(c \ge 4\), but the case of \(c < 4\) was open.

Notes

Acknowledgments

We would like to thank anonymous reviewers for their helpful feedback on prior versions of this work.

References

  1. 1.
    Balliu, A., Brandt, S., Olivetti, D., Suomela, J.: Almost global problems in the LOCAL model. In: Proceedings of 32nd International Symposium on Distributed Computing (DISC 2018). Leibniz International Proceedings in Informatics (LIPIcs), Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2018).  https://doi.org/10.4230/LIPIcs.DISC.2018.9
  2. 2.
    Balliu, A., Hirvonen, J., Korhonen, J.H., Lempiäinen, T., Olivetti, D., Suomela, J.: New classes of distributed time complexity. In: Proceedings of 50th ACM Symposium on Theory of Computing (STOC 2018), pp. 1307–1318. ACM Press (2018).  https://doi.org/10.1145/3188745.3188860
  3. 3.
    Barenboim, L., Elkin, M.: Distributed graph coloring: fundamentals and recent developments, vol. 4 (2013).  https://doi.org/10.2200/S00520ED1V01Y201307DCT011CrossRefGoogle Scholar
  4. 4.
    Barenboim, L., Elkin, M., Kuhn, F.: Distributed (\(\varDelta \)+1)-coloring in linear (in \(\varDelta \)) time. SIAM J. Comput. 43(1), 72–95 (2014).  https://doi.org/10.1137/12088848XMathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bonamy, M., Ouvrard, P., Rabie, M., Suomela, J., Uitto, J.: Distributed recoloring. In: Proceedings of 32nd International Symposium on Distributed Computing (DISC 2018). Leibniz International Proceedings in Informatics (LIPIcs), Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2018).  https://doi.org/10.4230/LIPIcs.DISC.2018.12
  6. 6.
    Brandt, S., et al.: A lower bound for the distributed Lovász local lemma. In: Proceedings of 48th ACM Symposium on Theory of Computing (STOC 2016), pp. 479–488. ACM Press (2016).  https://doi.org/10.1145/2897518.2897570
  7. 7.
    Brandt, S., et al.: LCL problems on grids. In: Proceedings of 36th ACM Symposium on Principles of Distributed Computing (PODC 2017), pp. 101–110. ACM Press (2017).  https://doi.org/10.1145/3087801.3087833
  8. 8.
    Chang, Y.J., He, Q., Li, W., Pettie, S., Uitto, J.: The complexity of distributed edge coloring with small palettes. In: Proceedings of 29th ACM-SIAM Symposium on Discrete Algorithms (SODA 2018), pp. 2633–2652. Society for Industrial and Applied Mathematics (2018).  https://doi.org/10.1137/1.9781611975031.168CrossRefGoogle Scholar
  9. 9.
    Chang, Y.J., Kopelowitz, T., Pettie, S.: An exponential separation between randomized and deterministic complexity in the LOCAL model. In: Proceedings of 57th IEEE Symposium on Foundations of Computer Science (FOCS 2016), pp. 615–624. IEEE (2016).  https://doi.org/10.1109/FOCS.2016.72
  10. 10.
    Chang, Y.J., Pettie, S.: A time hierarchy theorem for the LOCAL model. In: Proceedings of 58th IEEE Symposium on Foundations of Computer Science (FOCS 2017), pp. 156–167. IEEE (2017).  https://doi.org/10.1109/FOCS.2017.23
  11. 11.
    Chung, K.M., Pettie, S., Su, H.H.: Distributed algorithms for the Lovász local lemma and graph coloring. Distrib. Comput. 30(4), 261–280 (2017).  https://doi.org/10.1007/s00446-016-0287-6MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Cole, R., Vishkin, U.: Deterministic coin tossing with applications to optimal parallel list ranking. Inf. Control 70(1), 32–53 (1986).  https://doi.org/10.1016/S0019-9958(86)80023-7MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Fischer, M., Ghaffari, M.: Sublogarithmic distributed algorithms for Lovász local lemma, and the complexity hierarchy. In: Proceedings of 31st International Symposium on Distributed Computing (DISC 2017), pp. 18:1–18:16 (2017).  https://doi.org/10.4230/LIPIcs.DISC.2017.18
  14. 14.
    Ghaffari, M., Harris, D.G., Kuhn, F.: On Derandomizing local distributed algorithms. In: Proceedings of 59th IEEE Symposium on Foundations of Computer Science (FOCS 2018) (2018).  https://doi.org/10.1109/FOCS.2018.00069, http://arxiv.org/abs/1711.02194
  15. 15.
    Ghaffari, M., Hirvonen, J., Kuhn, F., Maus, Y.: Improved distributed \(\Delta \)-coloring. In: Proceedings of 37th ACM Symposium on Principles of Distributed Computing (PODC 2018), pp. 427–436. ACM (2018).  https://doi.org/10.1145/3212734.3212764
  16. 16.
    Ghaffari, M., Su, H.H.: Distributed degree splitting, edge coloring, and orientations. In: Proceedings of 28th ACM-SIAM Symposium on Discrete Algorithms (SODA 2017), pp. 2505–2523. Society for Industrial and Applied Mathematics (2017).  https://doi.org/10.1137/1.9781611974782.166
  17. 17.
    Kuhn, F.: Weak graph colorings. In: Proceedings of 21st ACM Symposium on Parallelism in Algorithms and Architectures (SPAA 2009), pp. 138–144. ACM Press, New York (2009).  https://doi.org/10.1145/1583991.1584032
  18. 18.
    Linial, N.: Locality in distributed graph algorithms. SIAM J. Comput. 21(1), 193–201 (1992).  https://doi.org/10.1137/0221015MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Naor, M.: A lower bound on probabilistic algorithms for distributive ring coloring. SIAM J. Discret. Math. 4(3), 409–412 (1991).  https://doi.org/10.1137/0404036MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Naor, M., Stockmeyer, L.: What can be computed locally? SIAM J. Comput. 24(6), 1259–1277 (1995).  https://doi.org/10.1137/S0097539793254571MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Panconesi, A., Rizzi, R.: Some simple distributed algorithms for sparse networks. Distrib. Comput. 14(2), 97–100 (2001).  https://doi.org/10.1007/PL00008932CrossRefGoogle Scholar
  22. 22.
    Peleg, D.: Distributed computing: a locality-sensitive approach. Society for Industrial and Applied Mathematics (2000).  https://doi.org/10.1137/1.9780898719772

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Alkida Balliu
    • 1
    Email author
  • Juho Hirvonen
    • 1
  • Christoph Lenzen
    • 2
  • Dennis Olivetti
    • 1
  • Jukka Suomela
    • 1
  1. 1.Aalto UniversityEspooFinland
  2. 2.Max Planck Institute for InformaticsSaarbrückenGermany

Personalised recommendations