Advertisement

Evacuating Two Robots from a Disk: A Second Cut

  • Yann DisserEmail author
  • Sören SchmittEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11639)

Abstract

We present an improved algorithm for the problem of evacuating two robots from the unit disk via an unknown exit on the boundary. Robots start at the center of the disk, move at unit speed, and can only communicate locally. Our algorithm improves previous results by Brandt et al. [CIAC’17] by introducing a second detour through the interior of the disk. This allows for an improved evacuation time of 5.6234. The best known lower bound of 5.255 was shown by Czyzowicz et al. [CIAC’15].

References

  1. 1.
    Alpern, S.: The rendezvous search problem. SIAM J. Control Optim. 33(3), 673–683 (1995)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Baezayates, R., Culberson, J., Rawlins, G.: Searching in the plane. Inf. Comput. 106(2), 234–252 (1993)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Beck, A., Newman, D.J.: Yet more on the linear search problem. Isr. J. Math. 8(4), 419–429 (1970).  https://doi.org/10.1007/BF02798690MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Borowiecki, P., Das, S., Dereniowski, D., Kuszner, Ł.: Distributed evacuation in graphs with multiple exits. In: Suomela, J. (ed.) SIROCCO 2016. LNCS, vol. 9988, pp. 228–241. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-48314-6_15CrossRefGoogle Scholar
  5. 5.
    Brandt, S., Laufenberg, F., Lv, Y., Stolz, D., Wattenhofer, R.: Collaboration without communication: evacuating two robots from a disk. In: Fotakis, D., Pagourtzis, A., Paschos, V.T. (eds.) CIAC 2017. LNCS, vol. 10236, pp. 104–115. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-57586-5_10CrossRefGoogle Scholar
  6. 6.
    Chalopin, J., Das, S., Disser, Y., Mihalák, M., Widmayer, P.: Mapping simple polygons: how robots benefit from looking back. Algorithmica 65, 43–59 (2013).  https://doi.org/10.1007/s00453-011-9572-8MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Chalopin, J., Das, S., Disser, Y., Mihalák, M., Widmayer, P.: Mapping simple polygons: the power of telling convex from reflex. ACM Trans. Algorithms 11, 1–16 (2015). Article No. 33MathSciNetCrossRefGoogle Scholar
  8. 8.
    Czyzowicz, J., et al.: Priority evacuation from a disk using mobile robots. In: Lotker, Z., Patt-Shamir, B. (eds.) SIROCCO 2018. LNCS, vol. 11085, pp. 392–407. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-01325-7_32CrossRefGoogle Scholar
  9. 9.
    Czyzowicz, J., Georgiou, K., Kranakis, E., Narayanan, L., Opatrny, J., Vogtenhuber, B.: Evacuating robots from a disk using face-to-face communication (extended abstract). In: Paschos, V.T., Widmayer, P. (eds.) CIAC 2015. LNCS, vol. 9079, pp. 140–152. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-18173-8_10CrossRefGoogle Scholar
  10. 10.
    Czyzowicz, J., Kranakis, E., Krizanc, D., Narayanan, L., Opatrny, J., Shende, S.: Wireless autonomous robot evacuation from equilateral triangles and squares. In: Papavassiliou, S., Ruehrup, S. (eds.) ADHOC-NOW 2015. LNCS, vol. 9143, pp. 181–194. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-19662-6_13CrossRefGoogle Scholar
  11. 11.
    Czyzowicz, J., Dobrev, S., Georgiou, K., Kranakis, E., MacQuarrie, F.: Evacuating two robots from multiple unknown exits in a circle. In: Proceedings of the 17th International Conference on Distributed Computing and Networking (IDCN). p. 8 (2016). Article No. 28Google Scholar
  12. 12.
    Czyzowicz, J., Gasieniec, L., Gorry, T., Kranakis, E., Martin, R., Pajak, D.: Evacuating robots via unknown exit in a disk. In: Kuhn, F. (ed.) DISC 2014. LNCS, vol. 8784, pp. 122–136. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-45174-8_9CrossRefGoogle Scholar
  13. 13.
    Czyzowicz, J., et al.: Evacuation from a disc in the presence of a faulty robot. In: Das, S., Tixeuil, S. (eds.) SIROCCO 2017. LNCS, vol. 10641, pp. 158–173. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-72050-0_10CrossRefGoogle Scholar
  14. 14.
    Czyzowicz, J., et al.: God save the queen. In: Proceedings of the 9th International Conference on Fun with Algorithms (FUN), pp. 16:1–16:20 (2018). Article No. 16Google Scholar
  15. 15.
    Feinerman, O., Korman, A.: The ants problem. Distrib. Comput. 30(3), 149–168 (2017)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Kao, M.Y., Reif, J.H., Tate, S.R.: Searching in an unknown environment: an optimal randomized algorithm for the cow-path problem. Inf. Comput. 131(1), 63–79 (1996)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Kranakis, E., Krizanc, D., Rajsbaum, S.: Mobile agent rendezvous: a survey. In: Flocchini, P., Gasieniec, L. (eds.) SIROCCO 2006. LNCS, vol. 4056, pp. 1–9. Springer, Heidelberg (2006).  https://doi.org/10.1007/11780823_1CrossRefGoogle Scholar
  18. 18.
    Lamprou, I., Martin, R., Schewe, S.: Fast two-robot disk evacuation with wireless communication. In: Gavoille, C., Ilcinkas, D. (eds.) DISC 2016. LNCS, vol. 9888, pp. 1–15. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53426-7_1CrossRefGoogle Scholar
  19. 19.
    Littlewood, J.: A Mathematician’s Miscellany. Methuen & Co. Ltd., London (1953)zbMATHGoogle Scholar
  20. 20.
    Pattanayak, D., Ramesh, H., Mandal, P.S., Schmid, S.: Evacuating two robots from two unknown exits on the perimeter of a disk with wireless communication. In: Proceedings of the 19th International Conference on Distributed Computing and Networking (ICDCN). p. 4 (2018). Article No. 20Google Scholar
  21. 21.
    Ta-Shma, A., Zwick, U.: Deterministic rendezvous, treasure hunts, and strongly universal exploration sequences. ACM Trans. Algorithms 10(3), 12:1–12:15 (2014)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of MathematicsTU DarmstadtDarmstadtGermany

Personalised recommendations