Advertisement

Asynchronous Rendezvous with Different Maps

  • Serafino CiceroneEmail author
  • Gabriele Di Stefano
  • Leszek Gąsieniec
  • Alfredo Navarra
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11639)

Abstract

This paper provides a study on the rendezvous problem in which two anonymous mobile entities referred to as robots \(r_A\) and \(r_B\) are asked to meet at an arbitrary node of a graph \(G = (V,E)\). As opposed to more standard assumptions robots may not be able to visit the entire graph G. Namely, each robot has its own map which is a connected subgraph of G. Such mobility restrictions may be dictated by the topological properties combined with the intrinsic characteristics of robots preventing them from visiting certain edges in E.

We consider four different variants of the rendezvous problem introduced in [Farrugia et al. SOFSEM’15] which reflect on restricted maneuverability and navigation ability of \(r_A\) and \(r_B\) in G. In the latter, the focus is on models in which robots’ actions are synchronised. The authors prove that one of the maps must be a subgraph of the other. I.e., without this assumption (or some extra knowledge) the rendezvous problem does not have a feasible solution. In this paper, while we keep the containment assumption, we focus on asynchronous robots and the relevant bounds in the four considered variants. We provide some impossibility results and almost tight lower and upper bounds when the solutions are possible.

References

  1. 1.
    Bampas, E., et al.: On asynchronous rendezvous in general graphs. Theor. Comput. Sci. 753, 80–90 (2019)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Borowiecki, P., Das, S., Dereniowski, D., Kuszner, Ł.: Distributed evacuation in graphs with multiple exits. In: Suomela, J. (ed.) SIROCCO 2016. LNCS, vol. 9988, pp. 228–241. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-48314-6_15CrossRefGoogle Scholar
  3. 3.
    Chalopin, J., Dieudonné, Y., Labourel, A., Pelc, A.: Fault-tolerant rendezvous in networks. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8573, pp. 411–422. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-43951-7_35CrossRefGoogle Scholar
  4. 4.
    Chalopin, J., Dieudonné, Y., Labourel, A., Pelc, A.: Rendezvous in networks in spite of delay faults. Distrib. Comput. 29(3), 187–205 (2016)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Czyzowicz, J., Kosowski, A., Pelc, A.: How to meet when you forget: log-space rendezvous in arbitrary graphs. Distrib. Comput. 25(2), 165–178 (2012)CrossRefGoogle Scholar
  6. 6.
    Czyzowicz, J., Kosowski, A., Pelc, A.: Time versus space trade-offs for rendezvous in trees. Distrib. Comput. 27(2), 95–109 (2014)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Czyzowicz, J., Labourel, A., Pelc, A.: How to meet asynchronously (almost) everywhere. ACM Trans. Algorithms 8(4), 37:1–37:14 (2012)MathSciNetCrossRefGoogle Scholar
  8. 8.
    De Marco, G., Gargano, L., Kranakis, E., Krizanc, D., Pelc, A., Vaccaro, U.: Asynchronous deterministic rendezvous in graphs. Theor. Comput. Sci. 355(3), 315–326 (2006)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Dereniowski, D., Klasing, R., Kosowski, A., Kusznera, L.: Rendezvous of heterogeneous mobile agents in edge-weighted networks. Theor. Comput. Sci. 608(3), 219–230 (2015)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Dessmark, A., Fraigniaud, P., Pelc, A.: Deterministic rendezvous in graphs. In: Di Battista, G., Zwick, U. (eds.) ESA 2003. LNCS, vol. 2832, pp. 184–195. Springer, Heidelberg (2003).  https://doi.org/10.1007/978-3-540-39658-1_19CrossRefGoogle Scholar
  11. 11.
    Dieudonné, Y., Pelc, A., Villain, V.: How to meet asynchronously at polynomial cost. SIAM J. Comput. 44(3), 844–867 (2015)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Farrugia, A., Gąsieniec, L., Kuszner, Ł., Pacheco, E.: Deterministic rendezvous in restricted graphs. In: Italiano, G.F., Margaria-Steffen, T., Pokorný, J., Quisquater, J.-J., Wattenhofer, R. (eds.) SOFSEM 2015. LNCS, vol. 8939, pp. 189–200. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46078-8_16CrossRefGoogle Scholar
  13. 13.
    Flocchini, P., Santoro, N., Viglietta, G., Yamashita, M.: Rendezvous with constant memory. Theor. Comput. Sci. 621, 57–72 (2016)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Gu, Z., Wang, Y., Hua, Q.S., Lau, F.C.M.: Blind rendezvous problem. In: Gu, Z., Wang, Y., Hua, Q.S., Lau, F.C.M. (eds.) Rendezvous in Distributed Systems. Springer, Singapore (2017).  https://doi.org/10.1007/978-981-10-3680-4_5CrossRefzbMATHGoogle Scholar
  15. 15.
    Pelc, A.: Deterministic rendezvous in networks: a comprehensive survey. Networks 59(3), 331–347 (2012)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Viglietta, G.: Rendezvous of two robots with visible bits. In: Flocchini, P., Gao, J., Kranakis, E., Meyer auf der Heide, F. (eds.) ALGOSENSORS 2013. LNCS, vol. 8243, pp. 291–306. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-45346-5_21CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Serafino Cicerone
    • 1
    Email author
  • Gabriele Di Stefano
    • 1
  • Leszek Gąsieniec
    • 2
  • Alfredo Navarra
    • 3
  1. 1.Department of Information Engineering, Computer Science and MathematicsUniversity of L’AquilaL’AquilaItaly
  2. 2.Department of Computer ScienceUniversity of LiverpoolLiverpoolUK
  3. 3.Department of Mathematics and Computer ScienceUniversity of PerugiaPerugiaItaly

Personalised recommendations