Advertisement

Collaborative Delivery on a Fixed Path with Homogeneous Energy-Constrained Agents

  • Jérémie Chalopin
  • Shantanu Das
  • Yann Disser
  • Arnaud LabourelEmail author
  • Matúš Mihalák
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11639)

Abstract

We consider the problem of collectively delivering a package from a specified source to a designated target location in a graph, using multiple mobile agents. Each agent starts from a distinct vertex of the graph, and can move along the edges of the graph carrying the package. However, each agent has limited energy budget allowing it to traverse a path of bounded length B; thus, multiple agents need to collaborate to move the package to its destination. Given the positions of the agents in the graph and their energy budgets, the problem of finding a feasible movement schedule is called the Collaborative Delivery problem and has been studied before.

One of the open questions from previous results is what happens when the delivery must follow a fixed path given in advance. Although this special constraint reduces the search space for feasible solutions, the problem of finding a feasible schedule remains NP hard (as the original problem). We consider the optimization version of the problem that asks for the optimal energy budget B per agent which allows for a feasible delivery schedule, given the initial positions of the agents. We show the existence of better approximations for the fixed-path version of the problem (at least for the restricted case of single pickup per agent), compared to the known results for the general version of the problem, thus answering the open question from the previous paper.

We provide polynomial time approximation algorithms for both directed and undirected graphs, and establish hardness of approximation for the directed case. Note that the fixed path version of collaborative delivery requires completely different techniques since a single agent may be used multiple times, unlike the general version of collaborative delivery studied before. We show that restricting each agent to a single pickup allows better approximations for fixed path collaborative delivery compared to the original problem. Finally, we provide a polynomial time algorithm for determining a feasible delivery strategy, if any exists, for a given budget B when the number of available agents is bounded by a constant.

References

  1. 1.
    Anaya, J., Chalopin, J., Czyzowicz, J., Labourel, A., Pelc, A., Vaxès, Y.: Convergecast and broadcast by power-aware mobile agents. Algorithmica 74(1), 117–155 (2016)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Awerbuch, B., Betke, M., Rivest, R.L., Singh, M.: Piecemeal graph exploration by a mobile robot. Inf. Comput. 152(2), 155–172 (1999)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bampas, E., Chalopin, J., Das, S., Hackfeld, J., Karousatou, C.: Maximal exploration of trees with energy-constrained agents. CoRR, abs/1802.06636 (2018)Google Scholar
  4. 4.
    Bampas, E., Das, S., Dereniowski, D., Karousatou, C.: Collaborative delivery by energy-sharing low-power mobile robots. In: Fernández Anta, A., Jurdzinski, T., Mosteiro, M.A., Zhang, Y. (eds.) ALGOSENSORS 2017. LNCS, vol. 10718, pp. 1–12. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-72751-6_1CrossRefGoogle Scholar
  5. 5.
    Bärtschi, A., et al.: Collaborative delivery with energy-constrained mobile robots. Theor. Comput. Sci. (2017)Google Scholar
  6. 6.
    Bärtschi, A., et al.: Energy-efficient delivery by heterogeneous mobile agents. In: 34th Symposium on Theoretical Aspects of Computer Science (STACS), pp. 10:1–10:14 (2017)Google Scholar
  7. 7.
    Bärtschi, A., Graf, D., Mihalák, M.: Collective fast delivery by energy-efficient agents. In: 43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018). Leibniz International Proceedings in Informatics (LIPIcs), vol. 117, pp. 56:1–56:16 (2018)Google Scholar
  8. 8.
    Bärtschi, A., Graf, D., Penna, P.: Truthful mechanisms for delivery with agents. In: 17th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2017). OpenAccess Series in Informatics (OASIcs), vol. 59, pp. 2:1–2:17 (2017)Google Scholar
  9. 9.
    Betke, M., Rivest, R.L., Singh, M.: Piecemeal learning of an unknown environment. Mach. Learn. 18(2), 231–254 (1995)Google Scholar
  10. 10.
    Bilò, D., Disser, Y., Gualà, L., Mihalák, M., Proietti, G., Widmayer, P.: Polygon-constrained motion planning problems. In: Flocchini, P., Gao, J., Kranakis, E., Meyer auf der Heide, F. (eds.) ALGOSENSORS 2013. LNCS, vol. 8243, pp. 67–82. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-45346-5_6CrossRefGoogle Scholar
  11. 11.
    Chalopin, J., Das, S., Mihalák, M., Penna, P., Widmayer, P.: Data delivery by energy-constrained mobile agents. In: Flocchini, P., Gao, J., Kranakis, E., Meyer auf der Heide, F. (eds.) ALGOSENSORS 2013. LNCS, vol. 8243, pp. 111–122. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-45346-5_9CrossRefGoogle Scholar
  12. 12.
    Chalopin, J., Jacob, R., Mihalák, M., Widmayer, P.: Data delivery by energy-constrained mobile agents on a line. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8573, pp. 423–434. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-43951-7_36CrossRefGoogle Scholar
  13. 13.
    Czyzowicz, J., Diks, K., Moussi, J., Rytter, W.: Communication problems for mobile agents exchanging energy. In: Suomela, J. (ed.) SIROCCO 2016. LNCS, vol. 9988, pp. 275–288. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-48314-6_18CrossRefzbMATHGoogle Scholar
  14. 14.
    Das, S., Dereniowski, D., Karousatou, C.: Collaborative exploration by energy-constrained mobile robots. In: Scheideler, C. (ed.) Structural Information and Communication Complexity. LNCS, vol. 9439, pp. 357–369. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-25258-2_25CrossRefGoogle Scholar
  15. 15.
    Das, S., Dereniowski, D., Uznanski, P.: Energy constrained depth first search. CoRR, abs/1709.10146 (2017)Google Scholar
  16. 16.
    Demaine, E.D., Hajiaghayi, M., Mahini, H., Sayedi-Roshkhar, A.S., Oveisgharan, S., Zadimoghaddam, M.: Minimizing movement. ACM Trans. Algorithms 5(3), 1–30 (2009)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Dereniowski, D., Disser, Y., Kosowski, A., Pająk, D., Uznański, P.: Fast collaborative graph exploration. Inf. Comput. 243, 37–49 (2015)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Duncan, C.A., Kobourov, S.G., Anil Kumar, V.S.: Optimal constrained graph exploration. In: 12th ACM Symposium on Discrete Algorithms, SODA 2001, pp. 807–814 (2001)Google Scholar
  19. 19.
    Dynia, M., Korzeniowski, M., Schindelhauer, C.: Power-aware collective tree exploration. In: Grass, W., Sick, B., Waldschmidt, K. (eds.) ARCS 2006. LNCS, vol. 3894, pp. 341–351. Springer, Heidelberg (2006).  https://doi.org/10.1007/11682127_24CrossRefGoogle Scholar
  20. 20.
    Dynia, M., Łopuszański, J., Schindelhauer, C.: Why robots need maps. In: Prencipe, G., Zaks, S. (eds.) SIROCCO 2007. LNCS, vol. 4474, pp. 41–50. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-72951-8_5CrossRefGoogle Scholar
  21. 21.
    Flocchini, P., Prencipe, G., Santoro, N.: Distributed Computing by Oblivious Mobile Robots. Morgan & Claypool, San Rafael (2012)CrossRefGoogle Scholar
  22. 22.
    Fraigniaud, P., Ga̧sieniec, L., Kowalski, D.R., Pelc, A.: Collective tree exploration. Networks 48(3), 166–177 (2006)Google Scholar
  23. 23.
    Fredman, M.L., Tarjan, R.E.: Fibonacci heaps and their uses in improved network optimization algorithms. J. ACM 34(3), 596–615 (1987)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York (1979)zbMATHGoogle Scholar
  25. 25.
    Giannakos, A., Hifi, M., Karagiorgos, G.: Data delivery by mobile agents with energy constraints over a fixed path. CoRR, abs/1703.05496 (2017)Google Scholar
  26. 26.
    Tovey, C.A.: A simplified NP-complete satisfiability problem. Discrete Appl. Math. 8(1), 85–89 (1984)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jérémie Chalopin
    • 1
  • Shantanu Das
    • 1
  • Yann Disser
    • 2
  • Arnaud Labourel
    • 1
    Email author
  • Matúš Mihalák
    • 3
  1. 1.Aix Marseille Univ, Université de Toulon, CNRS, LISMarseilleFrance
  2. 2.Department of MathematicsTU DarmstadtDarmstadtGermany
  3. 3.Department of Data Science and Knowledge EngineeringMaastricht UniversityMaastrichtNetherlands

Personalised recommendations