Advertisement

Characteristics of Bitcoin Transactions on Cryptomarkets

  • Xucan ChenEmail author
  • Mohammad Al Hasan
  • Xintao Wu
  • Pavel Skums
  • Mohammad Javad Feizollahi
  • Marie Ouellet
  • Eric L. Sevigny
  • David Maimon
  • Yubao Wu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11611)

Abstract

Cryptomarkets (or darknet markets) are commercial hidden-service websites that operate on The Onion Router (Tor) anonymity network. Cryptomarkets accept primarily bitcoin as payment since bitcoin is pseudonymous. Understanding bitcoin transaction patterns in cryptomarkets is important for analyzing vulnerabilities of privacy protection models in cryptocurrecies. It is also important for law enforcement to track illicit online crime activities in cryptomarkets. In this paper, we discover interesting characteristics of bitcoin transaction patterns in cryptomarkets. The results demonstrate that the privacy protection mechanism in cryptomarkets and bitcoin is vulnerable. Adversaries can easily gain valuable information for analyzing trading activities in cryptomarkets.

Keywords

Cryptomarket Cryptocurrency Bitcoin Peeling chain Transaction graph 

References

  1. 1.
    Bitcoin-blockchain-parser. https://github.com/alecalve/python-bitcoin-blockchain-parser. Accessed 10 Mar 2019
  2. 2.
    Bitcoin core. https://bitcoin.org/en/bitcoin-core/. Accessed 10 Mar 2019
  3. 3.
  4. 4.
    How bitcoin lets you spy on careless companies. http://https://web.archive.org/web/20140209202222/www.wired.co.uk/news/archive/2013-06/06/bitcoin-retail. Accessed 10 Mar 2019
  5. 5.
    How to parse the bitcoin blockchain. http://codesuppository.blogspot.com/2014/01/how-to-parse-bitcoin-blockchain.html. Accessed 10 Mar 2019
  6. 6.
    Mapping the bitcoin economy could reveal users’ identities. https://www.technologyreview.com/s/518816. Accessed 10 Mar 2019
  7. 7.
    Running a full node. https://bitcoin.org/en/full-node#what-is-a-full-node. Accessed 10 Mar 2019
  8. 8.
    Androulaki, E., Karame, G.O., Roeschlin, M., Scherer, T., Capkun, S.: Evaluating user privacy in bitcoin. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 34–51. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39884-1_4CrossRefGoogle Scholar
  9. 9.
    de Balthasar, T., Hernandez-Castro, J.: An analysis of bitcoin laundry services. In: Lipmaa, H., Mitrokotsa, A., Matulevičius, R. (eds.) NordSec 2017. LNCS, vol. 10674, pp. 297–312. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-70290-2_18CrossRefGoogle Scholar
  10. 10.
    Fleder, M., Kester, M.S., Pillai, S.: Bitcoin transaction graph analysis. arXiv preprint arXiv:1502.01657 (2015)
  11. 11.
    Genkin, D., Papadopoulos, D., Papamanthou, C.: Privacy in decentralized cryptocurrencies. Commun. ACM 61(6), 78–88 (2018)CrossRefGoogle Scholar
  12. 12.
    Gilbert, M., Dasgupta, N.: Silicon to syringe: cryptomarkets and disruptive innovation in opioid supply chains. Int. J. Drug Policy 46, 160–167 (2017)CrossRefGoogle Scholar
  13. 13.
    Harrigan, M., Fretter, C.: The unreasonable effectiveness of address clustering. In: 2016 International IEEE Conferences on Ubiquitous Intelligence & Computing, Advanced and Trusted Computing, Scalable Computing and Communications, Cloud and Big Data Computing, Internet of People, and Smart World Congress (UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld), pp. 368–373. IEEE (2016)Google Scholar
  14. 14.
    Meiklejohn, S., et al.: A fistful of bitcoins: characterizing payments among men with no names. In: Proceedings of the 2013 Conference on Internet Measurement Conference, pp. 127–140. ACM (2013)Google Scholar
  15. 15.
    Nakamoto, S., et al.: Bitcoin: a peer-to-peer electronic cash system (2008)Google Scholar
  16. 16.
    Ron, D., Shamir, A.: Quantitative analysis of the full bitcoin transaction graph. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 6–24. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39884-1_2CrossRefGoogle Scholar
  17. 17.
    Ruffing, T., Moreno-Sanchez, P., Kate, A.: CoinShuffle: practical decentralized coin mixing for bitcoin. In: Kutyłowski, M., Vaidya, J. (eds.) ESORICS 2014. LNCS, vol. 8713, pp. 345–364. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-11212-1_20CrossRefGoogle Scholar
  18. 18.
    Spagnuolo, M., Maggi, F., Zanero, S.: BitIodine: extracting intelligence from the bitcoin network. In: Christin, N., Safavi-Naini, R. (eds.) FC 2014. LNCS, vol. 8437, pp. 457–468. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-45472-5_29CrossRefGoogle Scholar
  19. 19.
    Ziegeldorf, J.H., Grossmann, F., Henze, M., Inden, N., Wehrle, K.: CoinParty: secure multi-party mixing of bitcoins. In: Proceedings of the 5th ACM Conference on Data and Application Security and Privacy, pp. 75–86. ACM (2015)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Xucan Chen
    • 1
    Email author
  • Mohammad Al Hasan
    • 2
  • Xintao Wu
    • 3
  • Pavel Skums
    • 1
  • Mohammad Javad Feizollahi
    • 4
  • Marie Ouellet
    • 5
  • Eric L. Sevigny
    • 5
  • David Maimon
    • 5
  • Yubao Wu
    • 1
  1. 1.Department of Computer ScienceGeorgia State UniversityAtlantaUSA
  2. 2.Department of Computer and Information ScienceIndiana University - Purdue University IndianapolisIndianapolisUSA
  3. 3.Department of Computer Science and Computer EngineeringUniversity of ArkansasFayettevilleUSA
  4. 4.Institute for InsightGeorgia State UniversityAtlantaUSA
  5. 5.Department of Criminal Justice and CriminologyGeorgia State UniversityAtlantaUSA

Personalised recommendations