Advertisement

Natural Microflora of Different Types of Foods

  • Hüseyin ErtenEmail author
  • Bilal Agirman
  • Cennet Pelin Boyaci-Gunduz
  • Erdem Carsanba
  • Sezgi Leventdurur
Chapter

Abstract

The sources of thousands of different microorganisms in foods could be either natural or external. The microorganisms in foods are divided into three groups as molds, yeast and bacteria. Natural microflora of foods influences the quality, availability and quantity of products. Molds are generally known as spoilage microorganisms in foods. Therefore, usage of them in food processing is limited (i.e. mold ripened cheese, soybean fermented foods). Conversely, yeasts and bacteria are widely used as important microorganisms in food industry. They have ability to ferment sugars to some industrially important compounds such as ethanol, lactic acid, acetic acid and carbon dioxide. In addition, they can contribute to the texture, flavor and safety of foods. The microorganisms intrinsically existing in food play a key role in processing of numerous foods especially plant based fermented foods, milk and meat based fermented products. The aim of the present chapter is to discuss the natural microflora belonging to different foods and also to explain their functions during food processing.

Keywords

Microflora Fermentation Milk Fruits Vegetables Cereals 

References

  1. Abbad Andaloussi S, Talbaoui H, Marczak R, Bonaly R (1995) Isolation and characterization of exocellular polysaccharides produced by Bifidobacterium longum. Appl Microbiol Biotechnol 43(6):995–1000CrossRefPubMedGoogle Scholar
  2. Abriouel H, Franz CMAP, Omar NB, Gálvez A (2011) Diversity and applications of Bacillus bacteriocins. FEMS Microbiol Rev 35(1):201–232CrossRefPubMedGoogle Scholar
  3. Adjou ES, Metome G, Gbaguidi BA, Dahouenon-Ahoussi E, Sohounhloue D (2017) Evaluation of the fungal microflora infesting pigeon pea (Cajanus cajan L. Millspaugh) in southern Benin and associated mycological hazards. Int J Health Anim Sci Food Saf 4(1):49–58Google Scholar
  4. Agirman B, Erten H (2018) The influence of various chloride salts to reduce sodium content on the quality parameters of şalgam (Shalgam): a traditional Turkish beverage based on black carrot. J Food Qual 2018:3292185CrossRefGoogle Scholar
  5. Ajayi AO (2013) Nature of tomatoes microflora under storage. Am J Exp Agric 3(1):89–101Google Scholar
  6. Albano H, van Reenen CA, Todorov SD, Cruz D, Fraga L, Hogg T, Dicks LM, Teixeira P (2009) Phenotypic and genetic heterogeneity of lactic acid bacteria isolated from “Alheria”, a traditional fermented sausage produced in Portugal. Meat Sci 82:389–398CrossRefPubMedGoogle Scholar
  7. Alvarez-Sieiro P, Montalban-Lopez M, Mu D, Kuipers OP (2016) Bacteriocins of lactic acid bacteria: extending the family. Appl Microbiol Biotechnol 100(7):2939–2951CrossRefPubMedPubMedCentralGoogle Scholar
  8. Amari M, Arango LF, Gabriel V, Robert H, Morel S, Moulis C, Gabriel B, Remaud-Simeon M, Fontagne-Faucher C (2013) Characterization of a novel dextransucrase from Weissella confusa isolated from sourdough. Appl Microbiol Biotechnol 97(12):5413–5422CrossRefPubMedGoogle Scholar
  9. Aneja KR, Dhiman R, Aggarwal NK, Kumar V, Kaur M (2014) Microbes associated with freshly prepared juices of citrus and carrots. Int J Food Sci 2014:408085CrossRefPubMedPubMedCentralGoogle Scholar
  10. Anonymous (1999) Introduction to bacteria. https://www.umsl.edu/microbes/files/pdfs/introductiontobacteria.pdf. Accessed 21 Feb 2019
  11. Anonymous (2003) Factors that influence microbial growth. Compr Rev Food Sci Food Saf 2:21–32CrossRefGoogle Scholar
  12. Anonymous (2019) Microorganisms and food. http://www.epralima.com/infoodquality/English_materials/Manuais/3.Microorganisms.pdf. Accessed 21 Feb 2019
  13. Antinone MJ, Ledford RA (1993) Reduction of diacetyl in cottage cheese by Geotrichum candidum. Cultured Dairy Prod J 28:26–30Google Scholar
  14. Arias CR, Burns JK, Friedrich LM, Goodrich RM, Parish ME (2002) Yeast species associated with orange juice: evaluation of different identification methods. Appl Environ Microbiol 68(4):1955–1961CrossRefPubMedPubMedCentralGoogle Scholar
  15. Arroyo-Lopez FN, Querol A, Bautista-Gallego J, Garrido-Fernandez A (2008) Role of yeasts in table olive production. Int J Food Microbiol 128(2):189–196CrossRefPubMedGoogle Scholar
  16. Askelson TE, Campasino A, Lee JT, Duong T (2014) Evaluation of phytate-degrading Lactobacillus culture administration to broiler chickens. Appl Environ Microbiol 80(3):943–950CrossRefPubMedPubMedCentralGoogle Scholar
  17. Austin B (2002) The bacterial microflora of fish. Sci World J 2:558–572CrossRefGoogle Scholar
  18. Aylward EB, Oleary J, Langlois BE (1980) Effect of milk storage on cottage cheese yield. J Dairy Sci 63(11):1819–1825CrossRefGoogle Scholar
  19. Barakat RK, Griffiths MW, Harris LJ (2000) Isolation and characterization of Carnobacterium, Lactococcus, and Enterococcus spp. from cooked, modified atmosphere packaged, refrigerated, poultry meat. Int J Food Microbiol 62(1–2):83–94CrossRefPubMedGoogle Scholar
  20. Barth M, Hankinson TR, Zhuang H, Breidt F (2009) Microbiological spoilage of fruits and vegetables. In: Sperber WH, Michael PD (eds) Compendium of the microbiological spoilage of foods and beverages. Springer, New York, pp 135–183CrossRefGoogle Scholar
  21. Baur C, Krewinkel M, Kranz B, von Neubeck M, Wenning M, Scherer S, Stoeckel M, Hinrichs J, Stressler T, Fischer L (2015) Quantification of the proteolytic and lipolytic activity of microorganisms isolated from raw milk. Int Dairy J 49:23–29CrossRefGoogle Scholar
  22. Bjorkroth KJ, Vandamme P, Korkeala HJ (1998) Identification and characterization of Leuconostoc carnosum, associated with production and spoilage of vacuum-packaged, sliced, cooked ham. Appl Environ Microbiol 64(9):3313–3319PubMedPubMedCentralGoogle Scholar
  23. Borch E, Molin G (1988) Numerical taxonomy of psychrotrophic lactic-acid bacteria from prepacked meat and meat-products. A Van Leeuw J Microb 54(4):301–323CrossRefGoogle Scholar
  24. Borch E, KantMuermans ML, Blixt Y (1996) Bacterial spoilage of meat and cured meat products. Int J Food Microbiol 33(1):103–120CrossRefPubMedGoogle Scholar
  25. Bourdichon F, Casaregola S, Farrokh C, Frisvad JC, Gerds ML, Hammes WP, Harnett J, Huys G, Laulund S, Ouwehand A, Powell IB, Prajapati JB, Seto Y, Ter Schure E, Van Boven A, Vankerckhoven V, Zgoda A, Tuijtelaars S, Hansen EB (2012) Food fermentations: microorganisms with technological beneficial use. Int J Food Microbiol 154(3):87–97CrossRefPubMedGoogle Scholar
  26. Buck JW, Walcott RR, Beuchat LR (2003) Recent trends in microbiological safety of fruits and vegetables. Plant Health Prog.  https://doi.org/10.1094/PHP-2003-0121-01-RV
  27. Bullerman LB, Bianchini A (2009) Food safety issues and the microbiology of cereals and cereal products. In: Heredia N, Wesley I, Garcia S (eds) Microbiologically safe foods. Wiley, Hoboken, NJ, pp 315–335CrossRefGoogle Scholar
  28. Burgess CM, Smid EJ, Rutten G, van Sinderen D (2006) A general method for selection of riboflavin-overproducing food grade micro-organisms. Microb Cell Factories 5(1):24CrossRefGoogle Scholar
  29. Cahill MM (1990) Bacterial flora of fishes: a review. Microb Ecol 19:21–41CrossRefPubMedGoogle Scholar
  30. Calvo J, Calvente V, de Orellano ME, Benuzzi D, Sanz de Tosetti MI (2007) Biological control of postharvest spoilage caused by Penicillium expansum and Botrytis cinerea in apple by using the bacterium Rahnella aquatilis. Int J Food Microbiol 113(3):251–257CrossRefPubMedGoogle Scholar
  31. Campbell AW (2016) Molds and mycotoxins: a brief review. Altern Ther Health Med 22(4):8–11PubMedGoogle Scholar
  32. Cao J, Zhang H, Yang Q, Ren R (2013) Efficacy of Pichia caribbica in controlling blue mold rot and patulin degradation in apples. Int J Food Microbiol 162:167–173CrossRefPubMedGoogle Scholar
  33. Capozzi V, Russo P, Dueñas MT, López P, Spano G (2012) Lactic acid bacteria producing B-group vitamins: a great potential for functional cereals products. Appl Microbiol Biotechnol 96(6):1383–1394CrossRefPubMedGoogle Scholar
  34. Carraturo F, De Castro O, Troisi J, De Luca A, Masucci A, Cennamo P, Trifuoggi M, Aliberti F, Guida M (2018) Comparative assessment of the quality of commercial black and green tea using microbiology analyses. BMC Microbiol 18:4CrossRefPubMedPubMedCentralGoogle Scholar
  35. Castro-Rosas J, Lopez EMS, Gomez-Aldapa CA, Ramirez CAG, Villagomez-Iberra JR, Gordillo-Martinez AJ, Lopez AV, Torres-Vitela MDR (2010) Incidence and behavior of Salmonella and Esherichia coli on whole and sliced zucchini squash (Cucurbita pepo) fruit. J Food Protect 73(8):1423–1429CrossRefGoogle Scholar
  36. Cerning J (1990) Exocellular polysaccharides produced by lactic acid bacteria. FEMS Microbiol Lett 87(1):113–130CrossRefGoogle Scholar
  37. Cerning J (1995) Production of exopolysaccharides by lactic acid bacteria and dairy propionibacteria. Lait 75(4–5):463–472CrossRefGoogle Scholar
  38. Chaillou S, Christieans S, Rivollier M, Lucquin I, Champomier-Verges MC, Zagorec M (2014) Quantification and efficiency of Lactobacillus sakei strain mixtures used as protective cultures in ground beef. Meat Sci 97(3):332–338CrossRefPubMedGoogle Scholar
  39. Chand-Goyal T, Spotts RA (1996) Enumeration of bacterial and yeast colonists of apple fruits and identification of epiphytic yeasts on pear fruits in the Pacific Northwest United States. Microbiol Res 151:427–432CrossRefPubMedGoogle Scholar
  40. Chaoui A, Faid M, Belhcen R (2003) Effect of natural starters used for sourdough bread in Morocco on phytate biodegradation. East Mediterr Health J 9(1–2):141–147PubMedGoogle Scholar
  41. Chavan RS, Chavan SR (2011) Sourdough technology—a traditional way for wholesome foods: a review. Compr Rev Food Sci Food Saf 10(3):169–182CrossRefGoogle Scholar
  42. Chen H, Hoover DG (2003) Bacteriocins and their food applications. Compr Rev Food Sci Food Saf 2(3):82–100CrossRefGoogle Scholar
  43. Choudhery AK, Mikolajcik EM (1970) Activity of Bacillus cereus proteinases in milk. J Dairy Sci 53(3):363–366CrossRefPubMedGoogle Scholar
  44. Christensen CM, Fanse HA, Nelson GH, Bates F, Mirocha CJ (1967) Microflora of black and red pepper. Appl Microbiol 15(3):622–626PubMedPubMedCentralGoogle Scholar
  45. Cocolin L, Innocente N, Biasutti M, Comi G (2004) The late blowing in cheese: a new molecular approach based on PCR and DGGE to study the microbial ecology of the alteration process. Int J Food Microbiol 90(1):83–91CrossRefPubMedGoogle Scholar
  46. Cocolin L, Dolci P, Rantsiou K (2011) Biodiversity and dynamics of meat fermentations: the contribution of molecular methods for a better comprehension of a complex ecosystem. Meat Sci 89(3):296–302CrossRefPubMedGoogle Scholar
  47. Comi G, Iacumin L (2012) Identification and process origin of bacteria responsible for cavities and volatile off-flavour compounds in artisan cooked ham. Int J Food Sci Technol 47:114–121CrossRefGoogle Scholar
  48. Dalton HK, Board RG, Davenport RR (1984) The yeasts of British fresh sausage and minced beef. Antonie Van Leeuwenhoek 50(3):227–248CrossRefPubMedGoogle Scholar
  49. De Angelis M, Gallo G, Corbo MR, McSweeney PL, Faccia M, Giovine M, Gobbetti M (2003) Phytase activity in sourdough lactic acid bacteria: purification and characterization of a phytase from Lactobacillus sanfranciscensis CB1. Int J Food Microbiol 87(3):259–270CrossRefPubMedGoogle Scholar
  50. De Vuyst L, Degeest B (1999) Heteropolysaccharides from lactic acid bacteria. FEMS Microbiol Rev 23(2):153–177CrossRefPubMedGoogle Scholar
  51. De Vuyst L, Neysens P (2005) The sourdough microflora: biodiversity and metabolic interactions. Trends Food Sci Technol 16:43–56CrossRefGoogle Scholar
  52. De Vuyst L, Vandamme EJ (1994) Lactic acid bacteria and bacteriocins: their practical importance. In: De Vuyst L, Vandamme EJ (eds) Bacteriocins of lactic acid bacteria: microbiology, genetics and applications. Blackie Academic and Professional, Glasgow, pp 1–12CrossRefGoogle Scholar
  53. Delfini C, Gaia P, Schellino R, Strano M, Pagliara A, Ambro S (2002) Fermentability of grape must after inhibition with dimethyl dicarbonate (DMDC). J Agric Food Chem 50:5605–5611CrossRefPubMedGoogle Scholar
  54. Di Cagno R, De Angelis M, Limitone A, Minervini F, Carnevali P, Corsetti A, Gaenzle M, Ciati R, Gobbetti M (2006) Glucan and fructan production by sourdough Weissella cibaria and Lactobacillus plantarum. J Agric Food Chem 54(26):9873–9881CrossRefPubMedGoogle Scholar
  55. Díez L, Rojo-Bezares B, Zaragaza M, Rodriguez JM, Torres C, Ruiz-Larrea F (2012) Antimicrobial activity of pediocin PA-1 against Oenococcus oeni and other wine bacteria. Food Microbiol 31(2):167–172CrossRefPubMedGoogle Scholar
  56. Doores S (1983) The microbiology of apples and apple products. Crit Rev Food Sci Nutr 19(2):133–149CrossRefPubMedGoogle Scholar
  57. Doyle MP, Beuchat LR (eds) (2007) Food microbiology: fundamentals and frontiers. ASM Press, WashingtonGoogle Scholar
  58. Egan AF, Shay BJ, Rogers PJ (1989) Factors affecting the production of hydrogen sulphide by Lactobacillus sake L13 growing on vacuum-packaged beef. J Appl Bacteriol 67(3):255–262CrossRefGoogle Scholar
  59. Endo A, Dicks LMT (2014) Physiology of the LAB. In: Holzapfel WH, Wood BJB (eds) Lactic acid bacteria biodiversity and taxonomy. Wiley, West Sussex, pp 13–30CrossRefGoogle Scholar
  60. Ercolini D, Russo F, Torrieri E, Masi P, Villani F (2006) Changes in the spoilage-related microbiota of beef during refrigerated storage under different packaging conditions. Appl Environ Microbiol 72(7):4663–4671CrossRefPubMedPubMedCentralGoogle Scholar
  61. Ercolini D, Russo F, Nasi A, Ferranti P, Villani F (2009) Mesophilic and psychrotrophic bacteria from meat and their spoilage potential in vitro and in beef. Appl Environ Microbiol 75(7):1990–2001CrossRefPubMedPubMedCentralGoogle Scholar
  62. Ercolini D, Ferrocino I, Nasi A, Ndagijimana M, Vernocchi P, La Storia A, Laghi L, Mauriello G, Guerzoni ME, Villani F (2011) Monitoring of microbial metabolites and bacterial diversity in beef stored under different packaging conditions. Appl Environ Microbiol 77(20):7372–7381CrossRefPubMedPubMedCentralGoogle Scholar
  63. Erdem O, Gultekin-Ozguven M, Berktas I, Ersan S, Tuna HE, Karadag A, Özçelik B, Güneş G, Cutting SM (2014) Development of a novel synbiotic dark chocolate enriched with Bacillus indicus HU36, maltodextrin and lemon fiber: optimization by responce surface methodology. LWT Food Sci Technol 56:187–193CrossRefGoogle Scholar
  64. Erten H, Tanguler H (2016) Shalgam (Şalgam): a traditional Turkish lactic acid fermented beverage based on black carrot. In: Hui YH, Evranuz EÖ, Erten H, Bingöl G, Flores MEJ (eds) Handbook of vegetable preservation and processing, 2nd edn. CRC Press, Boca Raton, FL, pp 841–849Google Scholar
  65. Erten H, Ağirman B, Boyaci-Gündüz CP, Çarşanba E, Sert S, Bircan S, Tangüler H (2014) Importance of yeasts and lactic acid bacteria in food processing. In: Malik A, Erginkaya Z, Ahmad S, Erten H (eds) Food processing strategies for quality assessment. Springer, New York, pp 351–378CrossRefGoogle Scholar
  66. Erten H, Boyacı-Gündüz CP, Agirman B, Cabaroglu T (2016) Fermentation, pickling and Turkish table olives. In: Hui YH, Evranuz Ö, Bingöl G, Erten H, Jaramillo-Flores ME (eds) Handbook of vegetable preservation and processing, 2nd edn. CRC Press, Boca Raton, FL, pp 209–230Google Scholar
  67. Erten H, Agirman B, Boyaci-Gunduz CP, Ben Ghorbal A (2017) Regional fermented vegetables and fruits in Europe. In: Paramithiotis S (ed) Lactic acid fermentation of fruits and vegetables. CRC Press, Boca Raton, FL, pp 205–235Google Scholar
  68. Ewaschuk JB, Walker JW, Diaz H, Madsen KL (2006) Bioproduction of conjugated linoleic acid by probiotic bacteria occurs in vitro and in vivo in mice. J Nutr 136(6):1483–1487CrossRefPubMedGoogle Scholar
  69. Fairbairn DJ, Law BA (1986) Proteinases of psychrotrophic bacteria - their production, properties, effects and control. J Dairy Res 53(1):139–177CrossRefPubMedGoogle Scholar
  70. FAO (1999) Fermented cereals: a global perspective. FAO Agricultural Services Bulletin, RomeGoogle Scholar
  71. FAO (2014) Sources of meat. http://www.fao.org/ag/againfo/themes/en/meat/backgr_sources.html. Accessed 20 Feb 2019
  72. FAO/WHO (2002) Report of a Joint FAO/WHO Working Group on Drafting guidelines for the evaluation of probiotics in food. London, Ontario, Canada, April 30 and May 1Google Scholar
  73. Farhad M, Kailasapathy K, Tamang JP (2010) Health aspects of fermented foods. In: Tamang JP, Kailasapathy K (eds) Fermented foods and beverages of the world. CRC Press, New York, NY, pp 391–414CrossRefGoogle Scholar
  74. Fitzgerald DJ, Stratford M, Gasson MJ, Narbad A (2004) The potential application of vanillin in preventing yeast spoilage of soft drinks and fruit juices. J Food Prot 67(2):391–395CrossRefPubMedGoogle Scholar
  75. Fleet GH (2003) Yeast interactions and wine flavour. Int J Food Microbiol 86(1–2):11–22CrossRefPubMedGoogle Scholar
  76. Forde A, Fitzgerald GF (2000) Biotechnological approaches to the understanding and improvement of mature cheese flavour. Curr Opin Biotechnol 11(5):484–489CrossRefPubMedGoogle Scholar
  77. Franco W, Johanningsmeier S, Lu J, Demo J, Wilson E, Moeller L (2017) Cucumber fermentation. In: Paramithiotis S (ed) Lactic acid fermentation of fruits and vegetables. CRC Press, Boca Raton, FL, pp 107–155Google Scholar
  78. Fucikovsky L, Ortega S (1997) Bacterial and fungal diseases of lettuce (Lactuca sativa L.) in the state of Mexico, Mexico. In: Rudolph K, Burr TJ, Mansfield JW, Stead D, Vivian A, von Kietzell J (eds) Pseudomonas syringae pathovars and related pathogens - developments in plant pathology. Springer, Dordrecht, pp 45–48Google Scholar
  79. Galanakis CM (2017) Chapter 1 - Introduction. In: Galanakis CM (ed) Nutraceutical and functional food components. Academic, London, pp 1–14Google Scholar
  80. Galle S, Schwab C, Arendt E, Ganzle M (2010) Exopolysaccharide-forming Weissella strains as starter cultures for sorghum and wheat sourdoughs. J Agric Food Chem 58(9):5834–5841CrossRefPubMedGoogle Scholar
  81. Gänzle M, Gobbetti M (2013) Physiology and biochemistry of lactic acid bacteria. In: Gobbetti M, Gänzle M (eds) Handbook on sourdough biotechnology. Springer, Boston, MA, pp 183–216CrossRefGoogle Scholar
  82. Gänzle MG, Loponen J, Gobbetti M (2008) Proteolysis in sourdough fermentations: mechanisms and potential for improved bread quality. Trends Food Sci Technol 19(10):513–521CrossRefGoogle Scholar
  83. García M, Sanz B, Garcia-Collia P, Ordónez J (1989) Activity and thermostability of the extracellular lipases and proteinases from pseudomonads isolated from raw milk. Milchwissenschaft 44:547–550Google Scholar
  84. Gardini F, Özogul Y, Suzzi G, Tabanelli G, Özogul F (2016) Technological factors affecting biogenic amine content in foods: a review. Front Microbiol 7:1218CrossRefPubMedPubMedCentralGoogle Scholar
  85. Garofalo C, Osimani A, Milanovic V, Aquilanti L, De Filippis F, Stellato G, Di Mauro S, Turchetti B, Buzzini P, Ercolini D, Clementi F (2015) Bacteria and yeast microbiota in milk kefir grains from different Italian regions. Food Microbiol 49:123–133CrossRefPubMedGoogle Scholar
  86. Geeraerts W, De Vuyst L, Leroy F (2019) Mapping the dominant microbial species diversity at expiration date of raw meat and processed meats from equine origin, an underexplored meat ecosystem, in the Belgian trail. Int J Food Microbiol 289:189–199CrossRefPubMedGoogle Scholar
  87. Geissler AJ, Behr J, von Kamp K, Vogel RF (2016) Metabolic strategies of beer spoilage lactic acid bacteria in beer. Int J Food Microbiol 216:60–68CrossRefPubMedGoogle Scholar
  88. Gerez CL, Rollan GC, de Valdez GF (2006) Gluten breakdown by Lactobacilli and pediococci strains isolated from sourdough. Lett Appl Microbiol 42(5):459–464CrossRefPubMedGoogle Scholar
  89. Gill CO (1996) Extending the storage life of raw chilled meats. Meat Sci 43(s1):99–109CrossRefGoogle Scholar
  90. Gill CO (2003) Active packaging in practice: meat. In: Ahvenainem R (ed) Novel food packaging technology, 1st edn. Woodhead Publishing Limited and CRC Press, Boca Raton, FL, pp 378–396Google Scholar
  91. Gill CO, Badoni M (2004) Effects of peroxyacetic acid, acidified sodium chlorite or lactic acid solutions on the microflora of chilled beef carcasses. Int J Food Microbiol 91(1):43–50CrossRefPubMedGoogle Scholar
  92. Gobbetti M, Smacchi E, Corsetti A (1996) The proteolytic system of Lactobacillus sanfrancisco CB1: purification and characterization of a proteinase, a dipeptidase, and an aminopeptidase. Appl Environ Microbiol 62(9):3220–3226PubMedPubMedCentralGoogle Scholar
  93. Gobbetti M, De Angelis M, Corsetti A, Di Cagno R (2005) Biochemistry and physiology of sourdough lactic acid bacteria. Trends Food Sci Technol 16(1):57–69CrossRefGoogle Scholar
  94. Gobbetti M, Cagno RD, De Angelis M (2010) Functional microorganisms for functional food quality. Crit Rev Food Sci Nutr 50(8):716–727CrossRefPubMedGoogle Scholar
  95. Gonzalez R (2006) Metabolic engineering of bacteria for food ingredients. In: Shetty K, Paliyath G, Pometto A, Levin RE (eds) Food biotechnology, 2nd edn. Taylor & Francis Group, Boca Raton, FL, pp 133–152Google Scholar
  96. Green PH, Cellier C (2007) Celiac disease. N Engl J Med 357(17):1731–1743CrossRefPubMedGoogle Scholar
  97. Gribble A, Brightwell G (2013) Spoilage characteristics of Brochothrix thermosphacta and campestris in chilled vacuum packaged lamb, and their detection and identification by real time PCR. Meat Sci 94(3):361–368CrossRefPubMedGoogle Scholar
  98. Gribble A, Mills J, Brightwell G (2014) The spoilage characteristics of Brochothrix thermosphacta and two psychrotolerant Enterobacteriacae in vacuum packed lamb and the comparison between high and low pH cuts. Meat Sci 97(1):83–92CrossRefPubMedGoogle Scholar
  99. Griffiths MW, Phillips JD, Muir DD (1987) Effect of low-temperature storage on the bacteriological quality of raw milk. Food Microbiol 4(4):285–291CrossRefGoogle Scholar
  100. Gullo M, Giudici P (2008) Acetic acid bacteria in traditional balsamic vinegar: phenotypic traits relevant for starter cultures selection. Int J Food Microbiol 125(1):46–53CrossRefPubMedGoogle Scholar
  101. Gurung N, Ray S, Bose S, Rai V (2013) A broader view: microbial enzymes and their relevance in industries, medicine, and beyond. Biomed Res Int 2013:329121CrossRefPubMedPubMedCentralGoogle Scholar
  102. Hammes WP, Ganzle M (1998) Sourdough breads and related products. In: Woods BJB (ed) Microbiology of fermented foods. Blackie Academic and Professional, London, pp 199–216CrossRefGoogle Scholar
  103. Hammes WP, Hertel C (2009) Genus I. Lactobacillus. Beijerink 1901. In: De Vos P, Garrity GM, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer K-H, Whitman WB (eds) Bergey’s manual of systematic bacteriology, The Firmicutes, vol 3, 2nd edn. Springer Science+Business Media, New York, NY, pp 465–510Google Scholar
  104. Hansen ÅS (2012) Sourdough bread. In: Hui EÖE YH, Arroyo-López FN, Fan L, Hansen AS, Jaramillo-Flores ME, Rakin M, Schwan RF, Zhou W (eds) Handbook of plant-based fermented food and beverage technology, 2nd edn. CRC Press, Boca Raton, FL, pp 493–515CrossRefGoogle Scholar
  105. Hansen Å, Hansen B (1996) Flavour of sourdough wheat bread crumb. Z Lebensm Unters For 202(3):244–249CrossRefGoogle Scholar
  106. Hardin J, Bertoni G, Kleinsmith LJ (2012) Becker’s world of the cell, 8th edn. Pearson Education, Inc., San FranciscoGoogle Scholar
  107. Harding MW, Butler N, Dmytriw W, Rajput S, Burke DA, Howard RJ (2016) Characterization of microorganisms from fresh produce in Alberta, Canada reveals novel food-spoilage fungi. Res J Microbiol 12(1):20–32CrossRefGoogle Scholar
  108. Harzallah D, Belhadj H (2013) Lactic acid bacteria as probiotics: characteristics, selection criteria and role in immunomodulation of human GI muccosal barrier. In: Kongo JM (ed) Lactic acid bacteria-R & D for food, health and livestock purposes. Intech, Rijeka, pp 197–216Google Scholar
  109. Holzapfel WH, Geisen R, Schillinger U (1995) Biological preservation of foods with reference to protective cultures, bacteriocins and food-grade enzymes. Int J Food Microbiol 24(3):343–362CrossRefPubMedGoogle Scholar
  110. Hou Z, Fink RC, Radtke C, Sadowsky MJ, Diez-Gonzalez F (2013) Incidence of naturally internalized bacteria in lettuce leaves. Int J Food Microbiol 162:260–265CrossRefPubMedGoogle Scholar
  111. Hozbor MC, Saiz AI, Yeannes MI, Fritz R (2006) Microbiological changes and its correlation with quality indices during aerobic iced storage of sea salmon (Pseudopercis semifasciata). LWT Food Sci Technol 39(2):99–104CrossRefGoogle Scholar
  112. Hugenholtz J, Hunik J, Santos H, Smid E (2002) Nutraceutical production by propionibacteria. Lait 82(1):103–112CrossRefGoogle Scholar
  113. Hutkins RW (2001) Metabolism of starter cultures. In: Marth EH, Steele J (eds) Applied dairy microbiology, 2nd edn. CRC Press, New York, NY, pp 207–241Google Scholar
  114. Jaiswal P, Sharma R, Sanodiya BS, Prakash S, Bisen P (2014) Microbial exopolysaccharides: natural modulators of dairy products. J Appl Pharm Sci 4(10):105–109Google Scholar
  115. Jay JM (2000) Modern food microbiology. Aspen Publishers, GaithersburgCrossRefGoogle Scholar
  116. Johnson ME (2001) Cheese products. In: Marth EH, Steele J (eds) Applied dairy microbiology, 2nd edn. CRC Press, New York, NY, pp 345–384Google Scholar
  117. Jolly L, Vincent SJF, Duboc P, Neeser J-R (2002) Exploiting exopolysaccharides from lactic acid bacteria. Antonie Van Leeuwenhoek 82(1):367–374CrossRefPubMedGoogle Scholar
  118. Kantor A, Kocaniova M, Kluz M (2015) Natural microflora of wine grape berries. J Microbiol Biotechnol Food Sci 4(SI1):32–36CrossRefGoogle Scholar
  119. Kasfi K, Parissa T, Jafarpour B, Tarighi S (2018a) Identification of epiphytic yeasts and bacteria with potential for biocontrol of grey mold disease on table grapes caused by Botrytis cinerea. Span J Agric Res 16(1):e1002CrossRefGoogle Scholar
  120. Kasfi K, Taheri P, Jafarpour B, Tarighi S (2018b) Identification of epiphytic yeasts and bacteria with potential for biocontrol of grey mold disease on table grapes caused by Botrytis cinerea. Span J Agric Res 16(1):e1002CrossRefGoogle Scholar
  121. Katina K, Poutanen K (2013) Nutritional aspects of cereal fermentation with lactic acid bacteria and yeast. In: Gobbetti M, Gänzle M (eds) Handbook on sourdough biotechnology. Springer, Boston, MA, pp 229–244CrossRefGoogle Scholar
  122. Katina K, Maina NH, Juvonen R, Flander L, Johansson L, Virkki L, Tenkanen M, Laitila A (2009) In situ production and analysis of Weissella confusa dextran in wheat sourdough. Food Microbiol 26(7):734–743CrossRefPubMedGoogle Scholar
  123. Khade PJ, Phirke NV (2015) Isolation and characterization of microbial flora associated with traditional wheat fermentation in submerged condition. Int J Res Stud Biosci 3(8):86–90Google Scholar
  124. Khalid NM, Marth EH (1990) Lactobacilli-their enzymes and role in ripening and spoilage of cheese: a review. J Dairy Sci 73(10):2669–2684CrossRefGoogle Scholar
  125. Kim SW, Kim S, Lee HJ, Park JW, Ro HS (2013) Isolation of fungal pathogens to an edible mushroom, Pleurotus eryngii, and development of spesific ITS Primers. Mycobiology 41(4):252–255CrossRefPubMedPubMedCentralGoogle Scholar
  126. Klaenhammer TR (1988) Bacteriocins of lactic acid bacteria. Biochimie 70(3):337–349CrossRefPubMedGoogle Scholar
  127. Kleerebezem M, Hugenholtz J (2003) Metabolic pathway engineering in lactic acid bacteria. Curr Opin Biotechnol 14(2):232–237CrossRefPubMedGoogle Scholar
  128. Klijn N, Nieuwenhof FF, Hoolwerf JD, van der Waals CB, Weerkamp AH (1995) Identification of Clostridium tyrobutyricum as the causative agent of late blowing in cheese by species-specific PCR amplification. Appl Environ Microbiol 61(8):2919–2924PubMedPubMedCentralGoogle Scholar
  129. Komesu A, Oliveira JAR, Martins LHS, Wolf Maciel MR, Maciel Filho R (2017) Lactic acid production to purification: a review. Bioresources 12(2):4364–4383Google Scholar
  130. Konar N, Toker OS, Oba S, Sagdic O (2016) Improving functionality of chocolate: a review on probiotic, prebiotic, and/or synbiotic characteristics. Trends Food Sci Technol 49:35–44CrossRefGoogle Scholar
  131. König H, Fröhlich J, Unden G (eds) (2009) Biology of microorganisms on grapes, in must and in wine. Springer, BerlinGoogle Scholar
  132. Korakli M, Rossmann A, Ganzle MG, Vogel RF (2001) Sucrose metabolism and exopolysaccharide production in wheat and rye sourdoughs by Lactobacillus sanfranciscensis. J Agric Food Chem 49(11):5194–5200CrossRefPubMedGoogle Scholar
  133. Kris-Etherton PM, Hecker KD, Bonanome A, Coval SM, Binkoski AE, Hilpert KF, Griel AE, Etherton TD (2002) Bioactive compounds in foods: their role in the prevention of cardiovascular disease and cancer. Am J Med 113(9, Supplement 2):71–88CrossRefGoogle Scholar
  134. Kröckel L (2013) The role of lactic acid bacteria in safety and flavour development of meat and meat products. In: Kongo M (ed) Lactic acid bacteria - R & D for food, health and livestock purposes. InTech, Rijeka, pp 129–152Google Scholar
  135. Kwon JH, Jee HJ (2005) Soft rot eggplant (Solanum melongena) caused by Choanephora cucurbitarum in Korea. Mycobiology 33(3):163–165CrossRefPubMedPubMedCentralGoogle Scholar
  136. Labadie J (1999) Consequences of packaging on bacterial growth. Meat is an ecological niche. Meat Sci 52(3):299–305CrossRefPubMedGoogle Scholar
  137. Laiño JE, LeBlanc JG, Savoy de Giori G (2012) Production of natural folates by lactic acid bacteria starter cultures isolated from artisanal Argentinean yogurts. Can J Microbiol 58(5):581–588CrossRefPubMedGoogle Scholar
  138. Lambrechts MG, Pretorius IS (2000) Yeast and its importance to wine aroma—a review. S Afr J Enol Vitic 21:97–129Google Scholar
  139. Landete JM, Ferrer S, Pardo I (2007) Biogenic amine production by lactic acid bacteria, acetic bacteria and yeast isolated from wine. Food Control 18(12):1569–1574CrossRefGoogle Scholar
  140. Lasztity R (2004) Micro-organisms important in food microbiology, Food quality and standards, vol 3. Department of Biochemistry and Food Technology, Budapest University of Technology and Economics, Budapest, HungaryGoogle Scholar
  141. LeBlanc JG, Burgess C, Sesma F, de Giori GS, van Sinderen D (2005) Ingestion of milk fermented by genetically modified Lactococcus lactis improves the riboflavin status of deficient rats. J Dairy Sci 88(10):3435–3442CrossRefPubMedGoogle Scholar
  142. LeBlanc JG, Rutten G, Bruinenberg P, Sesma F, de Giori GS, Smid EJ (2006) A novel dairy product fermented with Propionibacterium freudenreichii improves the riboflavin status of deficient rats. Nutrition 22(6):645–651CrossRefPubMedGoogle Scholar
  143. Ledenbach LH, Marshall RT (2009) Microbiological spoilage of dairy products. In: Sperber WH, Doyle MP (eds) Compendium of the microbiological spoilage of foods and beverages. Springer, New York, pp 41–67CrossRefGoogle Scholar
  144. Lee LW, Cheong MW, Curran P, Yu B, Liu SQ (2015) Coffee fermentation and flavor – an intricate and delicate relationship. Food Chem 185:182–191CrossRefPubMedGoogle Scholar
  145. Leff JW, Fierer N (2013) Bacterial communities associated with surfaces of fresh fruits and vegetables. PLoS One 8(3):e59310CrossRefPubMedPubMedCentralGoogle Scholar
  146. Liao CH (2006) Pseudomonas and related genera. In: Blackburn CD (ed) Food spoilage microorganisms, 1st edn. Woodhead Publishing, Cambridge, pp 507–540CrossRefGoogle Scholar
  147. Lim Y, Ryu JS, Shi S, Noh W, Kim E, Le QV, Lee HS, Ro HS (2008) Isolation of bacteria associated with the king oyster mushroom, Pleurotus eryngii. Mycobiology 36(1):13–18CrossRefPubMedPubMedCentralGoogle Scholar
  148. Linares DM, Gómez C, Renes E, Fresno JM, Tornadijo ME, Ross RP, Stanton C (2017) Lactic acid bacteria and Bifidobacteria with potential to design natural biofunctional health-promoting dairy foods. Front Microbiol 8:846CrossRefPubMedPubMedCentralGoogle Scholar
  149. Lopes FC, Lade S, Tichota DM, Daroit DJ, Velho RV, Pereira JQ, Corrêa APF, Brandelli A (2011) Production of proteolytic enzymes by a keratin-degrading Aspergillus niger. Enzyme Res 2011:487093CrossRefPubMedPubMedCentralGoogle Scholar
  150. Lopez HW, Leenhardt F, Coudray C, Remesy C (2002) Minerals and phytic acid interactions: is it a real problem for human nutrition? Int J Food Sci Technol 37(7):727–739CrossRefGoogle Scholar
  151. Loponen J (2006) Prolamin degradation in sourdoughs. Doctoral dissertation, University of Helsinki, HelsinkiGoogle Scholar
  152. Loss CR, Hotchkiss JH (2002) Inhibition of microbial growth by low-pressure and ambient pressure gasses. In: Juneja VK, Sofos JN (eds) Control of foodborne microorganisms. Marcel Dekker, New York, pp 245–279Google Scholar
  153. Lövgren A, Zhang M, Engström A, Dalhammar G, Landén R (1990) Molecular characterization of immune inhibitor A, a secreted virulence protease from Bacillus thuringiensis. Mol Microbiol 4(12):2137–2146CrossRefPubMedGoogle Scholar
  154. Loving AL, Perz J (2007) Microbialflora on restaurant beverage lemon slices. Features 70(5):18–22Google Scholar
  155. Maggiora M, Bologna M, Ceru MP, Possati L, Angelucci A, Cimini A, Miglietta A, Bozzo F, Margiotta C, Muzio G, Canuto RA (2004) An overview of the effect of linoleic and conjugated-linoleic acids on the growth of several human tumor cell lines. Int J Cancer 112(6):909–919CrossRefPubMedGoogle Scholar
  156. Makela P, Schillinger U, Korkeala H, Holzapfel WH (1992) Classification of ropy slime-producing lactic-acid bacteria based on DNA-DNA homology, and identification of Lactobacillus sake and Leuconostoc amelibiosum as dominant spoilage organisms in meat-products. Int J Food Microbiol 16(2):167–172CrossRefPubMedGoogle Scholar
  157. Manani TA, Collison EK, Mpuchane S (2006) Microflora of minimally processed frozen vegetables sold in Gaborone, Bostwana. J Food Protect 69(11):2581–2586CrossRefGoogle Scholar
  158. Mangia NP, Murgia MA, Garau G, Sanna MG, Deiana P (2008) Influence of selected lab cultures on the evolution of free amino acids, free fatty acids and Fiore Sardo cheese microflora during the ripening. Food Microbiol 25(2):366–377CrossRefPubMedGoogle Scholar
  159. Martins G, Lauga B, Miot-Sertier C, Mercier A, Lonvaud A, Soulas ML, Soulas G, Masneuf-Pomarede I (2013) Characterization of epiphytic bacterial communities from grapes, leaves, bark and soil of grapevine plants grown, and their relations. PLoS One 8(8):e73013CrossRefPubMedPubMedCentralGoogle Scholar
  160. Mas A, Guillamon JM, Torija MJ, Beltran G, Cerezo AB, Troncoso AM, Garcia-Parrilla MC (2014) Bioactive compounds derived from the yeast metabolism of aromatic amino acids during alcoholic fermentation. Biomed Res Int 898045:7Google Scholar
  161. Masoud W, Cesar LB, Jespersen L, Jakobsen M (2004) Yeast involved in fermentation of Coffea arabica in East Africa determined by genotyping and by direct denaturating gradient gel electrophoresis. Yeast 21(7):549–556CrossRefPubMedGoogle Scholar
  162. Maulani S, Hosseini SM, Elikaie A, Mirnurollahi SM (2012) Isolated microorganisms from Iranian grapes and its derivatives. Iran J Microbiol 4(1):25–29PubMedPubMedCentralGoogle Scholar
  163. Mayo B, Aleksandrzak-Piekarczyk T, Fernández M, Kowalczyk M, Álvarez-Martín P, Bardowski J (2010) Updates in the metabolism of lactic acid bacteria. In: Biotechnology of lactic acid bacteria. Wiley-Blackwell, Hoboken, NJ, pp 3–33CrossRefGoogle Scholar
  164. Mercanoglu Taban B, Saichana N (2017) Physiology and biochemistry of acetic acid bacteria. In: Yucel Sengun I (ed) Acetic acid bacteria fundamentals and food applications. CRC Press, Boca Raton, FL, pp 71–91CrossRefGoogle Scholar
  165. Milesi MM, McSweeney PL, Hynes ER (2008) Viability and contribution to proteolysis of an adjunct culture of Lactobacillus plantarum in two model cheese systems: cheddar cheese-type and soft-cheese type. J Appl Microbiol 105(3):884–892CrossRefPubMedGoogle Scholar
  166. Mohamed FO, Bassette R (1979) Quality and yield of cottage cheese influenced by psychrotrophic microorganisms in milk. J Dairy Sci 62(2):222–226CrossRefGoogle Scholar
  167. Molin G, Ternstrom A (1982) Numerical taxonomy of psychrotrophic Pseudomonads. J Gen Microbiol 128(6):1249–1264PubMedGoogle Scholar
  168. Molin G, Ternstrom A (1986) Phenotypically based taxonomy of psychrotrophic Pseudomonas isolated from spoiled meat, water, and soil. Int J Syst Bacteriol 36(2):257–274CrossRefGoogle Scholar
  169. Moral U, Nagar P, Maan S, Kaur K (2017) A growth of different types of microorganism, intrinsic and extrinsic factors of microorganism and their affects in food. Int J Curr Microbiol Appl Sci 6(1):290–298CrossRefGoogle Scholar
  170. Mossel DAA, Corry JEL, Struijk CB, Baird RM (1995) Essentials of the microbiology of foods: a textbook for advanced studies. Wiley, ChichesterGoogle Scholar
  171. Mritunjay SK, Kumar V (2017) A study on prevalence of microbial contamination on the surface of raw salad vegetables. 3Biotech 7(13):1–9Google Scholar
  172. Nath KR, Kostak BJ (1986) Etiology of white spot defect in Swiss cheese made from pasteurized milk. J Food Protect 49(9):718–723CrossRefGoogle Scholar
  173. Nelson PJ, Marshall RT (1977) Microbial proteolysis sometimes decreases yield of cheese curd. J Dairy Sci 60:35–36CrossRefGoogle Scholar
  174. Nguyen H, Elegado F, Librojo-Basilio N, Mabesa R, Dizon E (2011) Isolation and characterisation of selected lactic acid bacteria for improved processing of nem chua, a traditional fermented meat from Vietnam. Benef Microbes 1(1):67–74CrossRefGoogle Scholar
  175. Nguyen DTL, Van Hoorde K, Cnockaert M, de Bradt E, de Bruyne K, Le BT, Vandamme P (2013) A culture-dependent and -independent approach for the identification of lactic acid acteria associated with the production of nem chua, a Vietnamese fermented meat product. Food Res Int 50(1):232–240CrossRefGoogle Scholar
  176. Nieminen TT, Vihavainen E, Paloranta A, Lehto J, Paulin L, Auvinen P, Solismaa M, Bjorkroth KJ (2011) Characterization of psychrotrophic bacterial communities in modified atmosphere-packed meat with terminal restriction fragment length polymorphism. Int J Food Microbiol 144(3):360–366CrossRefPubMedGoogle Scholar
  177. Nigam PS (2013) Microbial enzymes with special characteristics for biotechnological applications. Biomol Ther 3(3):597–611Google Scholar
  178. Nychas GJE, Skandamis PN, Tassou CC, Koutsoumanis KP (2008) Meat spoilage during distribution. Meat Sci 78(1–2):77–89CrossRefPubMedGoogle Scholar
  179. Ojinnaka C, Jay AJ, Colquhoun IJ, Brownsey GJ, Morris ER, Morris VJ (1996) Structure and conformation of acetan polysaccharide. Int J Biol Macromol 19(3):149–156CrossRefPubMedGoogle Scholar
  180. Oladele, Olakunle O (2011) Microorganisms associated with the deterioration of fresh leafy Indian spinach in storage. J Plant Pathol Microbiol 2:110Google Scholar
  181. Oranusi S, Obioha TU, Adekeye BT (2014) Investigation on the microbial profile of frozen foods: fish and meat. Int J Adv Res Biol Sci 1(2):71–78Google Scholar
  182. Osburn K, Amaral J, Metcalf SR, Nickens DM, Rogers CM, Sausen C, Caputo R, Miller J, Li H, Tennessen JM, Bochman ML (2018) Primary souring: a novel bacteria-free method for sour beer production. Food Microbiol 70:76–84CrossRefPubMedGoogle Scholar
  183. Ouattara HD, Ouattara HG, Droux M, Reverchon S, Nasser W, Niamke SL (2017) Lactic acid bactria involved in cocoa beans fermentation from Ivory Coas: species diversity and citrate lypase production. Int J Food Microbiol 256:11–19CrossRefPubMedGoogle Scholar
  184. Öz E, Kaban G, Barış Ö, Kaya M (2017) Isolation and identification of lactic acid bacteria from pastırma. Food Control 77:158–162CrossRefGoogle Scholar
  185. Özdemir N, Yazıcı G, Şimşek Ö, Özkal SG, Çon AH (2018) The effect of lactic acid bacteria and yeast usage on aroma development during tarhana fermentation. Food Biosci 26:30–37CrossRefGoogle Scholar
  186. Paola B, Marco CL (2015) OTA-Grapes: a mechanistic model to predict ochratoxin A risk in grapes, a step beyond the system approach. Toxins 7:3012–3019CrossRefPubMedGoogle Scholar
  187. Papagianni M (2012) Metabolic engineering of lactic acid bacteria for the production of industrially important compounds. Comput Struct Biotechnol J 3:e201210003CrossRefPubMedPubMedCentralGoogle Scholar
  188. Pastink MI, Sieuwerts S, de Bok FAM, Janssen PWM, Teusink B, Vlieg JETV, Hugenholtz J (2008) Genomics and high-throughput screening approaches for optimal flavour production in dairy fermentation. Int Dairy J 18(8):781–789CrossRefGoogle Scholar
  189. Patel A, Shah N, Prajapati J (2013) Biosynthesis of vitamins and enzymes in fermented foods by lactic acid bacteria and related genera - a promising approach. Croat J Food Sci Technol 5(2):85–91Google Scholar
  190. Patra JK, Das G, Paramithiotis S (2017) Kimchii: a well-known Korean traditional fermented food. In: Paramithiotis S (ed) Lactic acid fermentation of fruits and vegetables. CRC Press, Boca Raton, FL, pp 83–105Google Scholar
  191. Perez Chabela ML, Rodriguez Serrano GM, Lara Calderon P, Guerrero I (1999) Microbial spoilage of meats offered for retail sale in Mexico City. Meat Sci 51(4):279–282CrossRefPubMedGoogle Scholar
  192. Pessione E, Cirrincione S (2016) Bioactive molecules released in food by lactic acid bacteria: encrypted peptides and biogenic amines. Front Microbiol 7:876CrossRefPubMedPubMedCentralGoogle Scholar
  193. Pothakos V, Devlieghere F, Villani F, Bjorkroth J, Ercolini D (2015) Lactic acid bacteria and their controversial role in fresh meat spoilage. Meat Sci 109:66–74CrossRefPubMedGoogle Scholar
  194. Pusey PL, Stockwell VO, Mazzola M (2009) Epiphytic bacteria and yeasts on apple blossoms and their potential as antagonists of Erwinia amylovora. Biol Control 99(5):571–581Google Scholar
  195. Pylypenko I, Pylypenko L, Sevastyanova E, Kotlyar E, Kruchek R (2016) Epiphytic and regulated microbial contaminants of food vegetable raw materials and products. Ukrainian Food J 5(2):272–280CrossRefGoogle Scholar
  196. Quigley L, O’Sullivan O, Beresford TP, Ross RP, Fitzgerald GF, Cotter PD (2011) Molecular approaches to analysing the microbial composition of raw milk and raw milk cheese. Int J Food Microbiol 150:81–94CrossRefPubMedGoogle Scholar
  197. Quigley L, O’Sullivan O, Stanton C, Beresford TP, Ross RP, Fitzgerald GF, Cotter PD (2013) The complex microbiota of raw milk. FEMS Microbiol Rev 37:664–698CrossRefPubMedGoogle Scholar
  198. Rai AK, Tamang JP, Palni U (2010) Nutritional value of lesser-known ethnic meat products of the Himalayas. J Hill Res 23(1–2):22–25Google Scholar
  199. Rathi J, Dhiman A (2016) Characterization of microbes in contaminated fruits and vegetables. J Pharm Sci Innov 5(2):51–53CrossRefGoogle Scholar
  200. Rattanasomboon N, Bellara SR, Harding CL, Fryer PJ, Thomas CR, Al-Rubeai M, McFarlane CM (1999) Growth and enumeration of the meat spoilage bacterium Brochothrix thermosphacta. Int J Food Microbiol 51(2–3):145–158CrossRefPubMedGoogle Scholar
  201. Rauch M, Lynch SV (2012) The potential for probiotic manipulation of the gastrointestinal microbiome. Curr Opin Biotechnol 23(2):192–201CrossRefPubMedGoogle Scholar
  202. Rawat S (2015) Food spoilage: microorganisms and their prevention. Asian J Plant Sci Res 5(4):47–56Google Scholar
  203. Ray B, Bhunia A (2013) Fundamental food microbiology. CRC Press, Boca Raton, FLGoogle Scholar
  204. Ray RC, Joshi VK (2015) Fermented foods: past, present and future. In: Ray RC, Montet D (eds) Microorganisms and fermentation of traditional foods. CRC Press, Boca Raton, FL, p 392Google Scholar
  205. Raybaudi-Massilia RM, Mosqueda-Melgar J, Soliva-Fortuny R, Martin-Belloso O (2009) Control of pathogenic and spoilage microorganisms in fresh-cut fruits and fruit juices by traditional and alternative natural antimicrobials. Compr Rev Food Sci Food Saf 8:157–180CrossRefGoogle Scholar
  206. Reale A, Mannina L, Tremonte P, Sobolev AP, Succi M, Sorrentino E, Coppola R (2004) Phytate degradation by lactic acid bacteria and yeasts during the wholemeal dough fermentation: a 31P NMR study. J Agric Food Chem 52(20):6300–6305CrossRefPubMedGoogle Scholar
  207. Richards GM, Beuchat LR (2005) Metabiotic associations of molds and Salmonella Poona on intact and wounded cantaloupe rind. Int J Food Microbiol 97:327–339CrossRefPubMedGoogle Scholar
  208. Rieder G, Krisch L, Fischer H, Kaufmann M, Maringer A, Wessler S (2012) Carnobacterium divergens - a dominating bacterium of pork meat juice. FEMS Microbiol Lett 332(2):122–130CrossRefPubMedGoogle Scholar
  209. Rizzello CG, De Angelis M, Di Cagno R, Camarca A, Silano M, Losito I, De Vincenzi M, De Bari MD, Palmisano F, Maurano F, Gianfrani C, Gobbetti M (2007) Highly efficient gluten degradation by Lactobacilli and fungal proteases during food processing: new perspectives for celiac disease. Appl Environ Microbiol 73(14):4499–4507CrossRefPubMedPubMedCentralGoogle Scholar
  210. Rizzello CG, Coda R, Gobbetti M (2017) Chapter 18 - Use of sourdough fermentation and nonwheat flours for enhancing nutritional and healthy properties of wheat-based foods A2 - Frias, Juana. In: Martinez-Villaluenga C, Peñas E (eds) Fermented foods in health and disease prevention. Academic, Boston, MA, pp 433–452CrossRefGoogle Scholar
  211. Rollan G, De Angelis M, Gobbetti M, de Valdez GF (2005) Proteolytic activity and reduction of gliadin-like fractions by sourdough Lactobacilli. J Appl Microbiol 99(6):1495–1502CrossRefPubMedGoogle Scholar
  212. Sahu L, Panda S, Paramithiotis S, Zdolec N, Ray R (2015) Biogenic amines in fermented foods: overview. In: Montet D, Ray RC (eds) Fermented foods. Part 1: Biochemistry and technology. CRC Press, Boca Raton, FL, pp 318–332CrossRefGoogle Scholar
  213. Sajur SA, Saguir FM, Manca de Nadra MC (2007) Effect of dominant slecie of lactic acid bacteria from tomato on natural microflora development in tomato puree. Food Control 18:594–600CrossRefGoogle Scholar
  214. Salovaara H, Gänzle M (2012) Lactic acid bacteria in cereal-based products. In: Lahtinen S, Ouwehand AC, Salminen S, von Wright A (eds) Lactic acid bacteria microbiological and functional aspects, 4th edn. Taylor & Francis Group, LLC, Boca Raton, FL, pp 227–245Google Scholar
  215. Scardovi V (1986) Genus Bifidobacterium Orla-Jensen 1924, 472AL. In: Sneath PHA, Mair NS, Sharpe ME, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 2. Williams & Wilkins, Baltimore, MD, pp 1418–1434Google Scholar
  216. Schwenninger SM, Meile L, Lacroix C (2011) 2 - Antifungal lactic acid bacteria and propionibacteria for food biopreservation. In: Lacroix C (ed) Protective cultures, antimicrobial metabolites and bacteriophages for food and beverage biopreservation. Woodhead Publishing, Cambridge, UK, pp 27–62CrossRefGoogle Scholar
  217. Sengun IY, Karabiyikli S (2011) Importance of acetic acid bacteria in food industry. Food Control 22:647–665CrossRefGoogle Scholar
  218. Shaw BG, Latty JB (1982) A numerical taxonomic study of Pseudomonas strains from spoiled meat. J Appl Bacteriol 52(2):219–228CrossRefPubMedGoogle Scholar
  219. Shobha S (2014) Bacteriological analysis of fresh vegetables and fruits of local market and effect of pretreatment by antimicrobial agents on their quality. Int Res J Biol Sci 3(11):15–17Google Scholar
  220. Simova E, Simov Z, Beshkova D, Frengova G, Dimitrov Z, Spasov Z (2006) Amino acid profiles of lactic acid bacteria, isolated from kefir grains and kefir starter made from them. Int J Food Microbiol 107(2):112–123CrossRefPubMedGoogle Scholar
  221. Şimşek Ö, Özel S, Çon AH (2017) Comparison of lactic acid bacteria diversity during the fermentation of Tarhana produced at home and on a commercial scale. Food Sci Biotechnol 26(1):181–187CrossRefPubMedPubMedCentralGoogle Scholar
  222. Sivieri K, Bedani R, Cardoso D, Cavallini U, Rossi EA (2013) Probiotics and intestinal microbiota: implications in colon cancer prevention. In: Kongo JM (ed) Lactic acid bacteria-R & D for food, Health and Livestock Purposes. InTech, Rijeka, pp 217–242Google Scholar
  223. Solieri L, Giudici P (2008) Yeasts associated to traditional balsamic vinegar: ecological and technological features. Int J Food Microbiol 125:36–45CrossRefPubMedGoogle Scholar
  224. Spano G, Russo P, Lonvaud-Funel A, Lucas P, Alexandre H, Grandvalet C, Coton E, Coton M, Barnavon L, Bach B, Rattray F, Bunte A, Magni C, Ladero V, Alvarez M, Fernández M, Lopez P, de Palencia PF, Corbi A, Trip H, Lolkema JS (2010) Biogenic amines in fermented foods. Eur J Clin Nutr 64(Suppl 3):S95–S100CrossRefPubMedGoogle Scholar
  225. Stanton C, Ross RP, Fitzgerald GF, Van Sinderen D (2005) Fermented functional foods based on probiotics and their biogenic metabolites. Curr Opin Biotechnol 16(2):198–203CrossRefPubMedGoogle Scholar
  226. Sun SY, Gong HS, Jiang XM, Zhao YP (2014) Selected non-Saccharomyces wine yeasts in controlled multistarter fermentations with S. cerevisiae on alcoholic fermentation behaviour and wine aroma of cherry wines. Food Microbiol 44:15–23CrossRefPubMedGoogle Scholar
  227. Sutherland IW (1972) Bacterial exopolysaccharides. Adv Microbiol Physiol 8:143–213CrossRefGoogle Scholar
  228. Svoboda A, Shaw A, Wilson L, Mendonca A, Nair A, Daraba A (2016) The effects of produce washes on the quality and shelf life of “cantaloupe” (Cucumis melo var. cantalupensis) and “watermelon” (Citrullus lantus var. lanatus). J Food Qual 39:773–779CrossRefGoogle Scholar
  229. Swain MR, Ananadharaj M (2017) Regional fermented vegetavles and fruits in Asia-Pacific. In: Paramithiotis S (ed) Lactic acid fermentation of fruits and vegetables. CRC Press, Boca Raton, FL, pp 181–203Google Scholar
  230. Szkaradkiewicz AK, Karpiński TM (2013) Probiotics and prebiotics. J Biol Earth Sci 3(1):42–47Google Scholar
  231. Tamang JP, Tamang B, Schillinger U, Guigas C, Holzapfel WH (2009) Functional properties of lactic acid bacteria isolated from ethnic fermented vegetables of the Himalayas. Int J Food Microbiol 135(1):28–33CrossRefPubMedGoogle Scholar
  232. Tamang JP, Thapa N, Tamang B, Rai A, Chettri R (2015) Microorganisms in fermented foods and beverages. In: Tamang JP (ed) Health benefits of fermented foods and beverages. CRC Press, Boca Raton, FL, pp 1–110CrossRefGoogle Scholar
  233. Tamang JP, Shin D-H, Jung S-J, Chae S-W (2016a) Functional properties of microorganisms in fermented foods. Front Microbiol 7:578PubMedPubMedCentralGoogle Scholar
  234. Tamang JP, Watanabe K, Holzapfel WH (2016b) Review: Diversity of microorganisms in global fermented foods and beverages. Front Microbiol 7:377PubMedPubMedCentralGoogle Scholar
  235. Tamime AY, Robinson RK (2007) Yoghurt: science and technology. Woodhead Publishing Ltd, CambridgeGoogle Scholar
  236. Tamine AY, Skriver A, Nilsson LE (2006) Starter cultures. In: Tamime A (ed) Fermented milk. Blackwell Publishing, Oxford, pp 11–52CrossRefGoogle Scholar
  237. Taniwaki MH, Hocking AD, Pitt JI, Fleet GH (2010) Growth and mycotoxin production by fungi in atmospheres containing 80% carbon dioxide and 20% oxygen. Int J Food Microbiol 143(3):218–225CrossRefPubMedGoogle Scholar
  238. Taranto MP, Vera JL, Hugenholtz J, De Valdez GF, Sesma F (2003) Lactobacillus reuteri CRL1098 produces cobalamin. J Bacteriol 185(18):5643–5647CrossRefPubMedPubMedCentralGoogle Scholar
  239. Thanigaivel G, Anandhan AS (2015) Isolation and characterization of microorganisms from raw meat obtained from different market places in and around Chennai. J Pharm Chem Biol Sci 3(2):295–301Google Scholar
  240. Thapa N, Tamang JP (2015) Functionality and therapeutic values of fermented foods. In: Tamang JP (ed) Health benefits of fermented foods, vol 111–168. CRC Press, New York, NY, pp 111–151CrossRefGoogle Scholar
  241. Thiele C, Gänzle MG, Vogel RF (2002) Contribution of sourdough Lactobacilli, yeast, and cereal enzymes to the generation of amino acids in dough relevant for bread flavor. Cereal Chem 79(1):45–51CrossRefGoogle Scholar
  242. Thomas DS, Davenport RR (1985) Zygosaccharomyces bailii—a profile of characteristics and spoilage activities. Food Microbiol 2(2):157–169CrossRefGoogle Scholar
  243. Thuy Ho VT, Zhao J, Fleet G (2014) Yeasts are essential for cocoa bean fermentation. Int J Food Microbiol 174:72–87CrossRefGoogle Scholar
  244. Tieking M, Korakli M, Ehrmann MA, Gänzle MG, Vogel RF (2003) In situ production of exopolysaccharides during sourdough fermentation by cereal and intestinal isolates of lactic acid bacteria. Appl Environ Microbiol 69(2):945–952CrossRefPubMedPubMedCentralGoogle Scholar
  245. Tjwan Tan PS, Poolman B, Konings WN (1993) Proteolytic enzymes of Lactococcus lactis. J Dairy Res 60(2):269–286CrossRefPubMedGoogle Scholar
  246. Tortora G, Funke B, Case C (2010a) Microbiology: an introduction. Pearson Benjamin Cummings, San FranciscoGoogle Scholar
  247. Tortora GJ, Funke BR, Case CL (2010b) Microbiology: an introduction, 10th edn. Pearson Education, San Francisco, CA, 960 pGoogle Scholar
  248. Tournas VH (2005a) Spoilage of vegetable crops by bacteria and fungi and related health hazards. Crit Rev Microbiol 31:33–44CrossRefPubMedGoogle Scholar
  249. Tournas VH (2005b) Moulds and yeasts in fresh and minimally processed vegetables, and sprouts. Int J Food Microbiol 99(1):71–77CrossRefPubMedGoogle Scholar
  250. Tournas VH, Katsoudas E (2005) Mould and yeast flora in fresh berries, grapes and citrus fruits. Int J Food Microbiol 105:11–17CrossRefPubMedGoogle Scholar
  251. Tournas V, Stack ME, Mislivec PB, Koch HA, Bandler R (2000) Yeasts, molds and mycotoxins. https://wwwfdagov/food/foodscienceresearch/laboratorymethods/ucm071435.htm. Accessed 21 Feb 2019
  252. Tye-Din J, Anderson R (2008) Immunopathogenesis of celiac disease. Curr Gastroenterol Rep 10(5):458–465CrossRefPubMedGoogle Scholar
  253. Us O, Wesley B, Ga O (2012) Investigation on the microbial profile of canned foods. J Biol Food Sci Res 1(1):15–18Google Scholar
  254. Van Hoorde K, Van Landschoot A (2014) Application of adjunct-cultures and their influence on the sensory properties of hard and semi-hard cheese varieties. In: Ravishankar Rai V, Bai JA (eds) Beneficial microbes in fermented and functional foods. CRC Press, Boca Raton, FL, pp 531–550Google Scholar
  255. Varela J, Varela C (2019) Microbiological strategies to produce beer and wine with reduced ethanol concentration. Curr Opin Biotechnol 56:88–96CrossRefPubMedGoogle Scholar
  256. Vicente AR, Manganaris GA, Sozzi GO, Crisosto CH (2009) Nutritional quality of fruits and vegetables. In: Florkowski WJ, Shewfelt RL, Brueckner B, Prussia E (eds) Postharvest handling: a system approach, 2nd edn. Academic, New York, NY, pp 58–106Google Scholar
  257. Vieira DAP, Cabral L, Noronha MF, Junior GVL, Sant’ana AS (2019) Microbiota of eggs revealed by 16S Rrna-based sequencing: from raw materials produced by different suppliers to chilled pasteurized liquid products. Food Control 96:194–204CrossRefGoogle Scholar
  258. von Holy A, Cloete TE, Holzapfel WH (1991) Quantification and characterization of microbial populations associated with spoiled, vacuum-packed Vienna sausages. Food Microbiol 8(2):95–104CrossRefGoogle Scholar
  259. von Wright A, Axelsson L (2012) Lactic acid bacteria: an introduction. In: Lahtinen S, Ouwehand AC, Salminen S, von Wright A (eds) Lactic acid bacteria microbiological and functional aspects, 4th edn. CRC Press, Boca Raton, FL, pp 1–16Google Scholar
  260. Walker GM (1999) Yeast physiology and biotechnology. Wiley, ChichesterGoogle Scholar
  261. Walker M, Phillips CA (2007) The growth of Propionibacterium cyclohexanicum in fruit juices and its survival following elevated temperature treatments. Food Microbiol 24(4):313–318CrossRefPubMedGoogle Scholar
  262. Wang JJ, Frank JF (1981) Characterization of psychrotrophic bacterial-contamination in commercial Buttermilk. J Dairy Sci 64(11):2154–2160CrossRefGoogle Scholar
  263. Wang JF, Chen NC, Li HM (1998) Resistance sources to bacterial wilt in eggplant (Solanum melongena). In: Prior P, Allen C, Elphinstone J (eds) Bacterial wilt disease. Springer, Berlin, pp 284–289CrossRefGoogle Scholar
  264. Wareing P, Stuart F, Fernandes R (2011) Factors affecting the growth of microorganisms in foods. RSC Adv 2011:437Google Scholar
  265. Wiander B (2017) Sauerkraut fermentation. In: Paramithiotis S (ed) Lactic acid fermentation of fruits and vegetables. CRC Press, Boca Raton, FL, pp 65–81Google Scholar
  266. Wohlrab Y, Bockelmann W (1992) Purification and characterization of a dipeptidase from Lactobacillus delbrueckii subsp. bulgaricus. Int Dairy J 2(6):345–361CrossRefGoogle Scholar
  267. Yalcin S, Bozdemir MT, Ozbas Y (2010) Citric acid production by yeasts: fermentation conditions, process optimization and strain improvement. In: Mendez-Vilas A (ed) Current research, technology and education topics in applied microbiology and microbial biotechnology, vol 2. Formatex Research Center, Badajoz, Spain, pp 1374–1382Google Scholar
  268. Yu JH (2015) Fresh seminar: Molds, mycotoxins, and concerns of the food industry. Madison, Food Research Institute, Department of Bacteriology, University of Wisconsin–MadisonGoogle Scholar
  269. Zahavi T, Droby S, Cohen L, Weiss B, Ben-Arie R (2002) Characterization of the yeast flora on the surface of grape berries in Israel. Vitis 41(4):203–208Google Scholar
  270. Zajsek K, Kolar M, Gorsek A (2011) Characterisation of the exopolysaccharide kefiran produced by lactic acid bacteria entrapped within natural kefir grains. Int J Dairy Technol 64(4):544–548CrossRefGoogle Scholar
  271. Zakpaa HD, Imbeah CM, Mak-Mensah EE (2009) Microbial characterization of fermented meat products on some selected markets in the Kumasi metropolis, Ghana. Afr J Food Sci 3(11):340–346Google Scholar
  272. Zhang W, Zhang Y (2017) Spoilage microorganisms in meat products. In: Wang Y, Zhang W, Fu L (eds) Food spoilage microorganisms: ecology and control, 1st edn. CRC Press, Boca Raton, FL, pp 77–93Google Scholar
  273. Zhang YM, Mao YW, Li K, Dong PC, Liang RR, Luo X (2011) Models of Pseudomonas growth kinetics and shelf life in chilled Longissimus dorsi muscles of beef. Asian Austral J Anim 24(5):713–722CrossRefGoogle Scholar
  274. Zoon P, Allersma D (1996) Eye and crack formation in cheese by carbon dioxide from decarboxylation of glutamic acid. Neth Milk Dairy J 50(2):309–318Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Hüseyin Erten
    • 1
    Email author
  • Bilal Agirman
    • 1
  • Cennet Pelin Boyaci-Gunduz
    • 1
    • 2
  • Erdem Carsanba
    • 3
  • Sezgi Leventdurur
    • 1
  1. 1.Department of Food Engineering, Faculty of AgricultureCukurova UniversityAdanaTurkey
  2. 2.Department of Food Engineering, Faculty of EngineeringAdana Science and Technology UniversityAdanaTurkey
  3. 3.Altınozu Agricultural Sciences Vocational SchoolMustafa Kemal UniversityHatayTurkey

Personalised recommendations