Advertisement

A Natural Way of Food Preservation: Bacteriocins and Their Applications

  • Halil İbrahim KayaEmail author
  • Burcu Özel
  • Ömer Şimşek
Chapter

Abstract

Since the consumers demand foods produced without additives, new friendly preservation strategies become significant in processing of foods. Bacteriocins are ribosomally synthesized peptides produced from many bacterial strains which are approved as natural due to being degraded by digestive enzymes. In Lactic acid bacteria (LAB), many strains have been identified as bacteriocin producers. In fact, nisin was approved by Food and Drug Administration (FDA) to be used as food additive in some foods. Lacticin and pediocin producers, Lactococcus lactis and Pediococcus acidilactici, respectively, have been used as protective cultures in food system. Bacteriocins produced by some LAB have shown wide antimicrobial activity against food related pathogens species such as Bacillus, Listeria, Staphylococcus and Clostridium. However, in recent years bacteriocins having specifically narrow-spectrum antimicrobial activity have been introduced.

Bacteriocins are used either directly in food systems or by the addition of producer strains. In this way, it has been possible to prevent pathogenic microorganisms in various fermented food products. However, the effectiveness of the LAB bacteriocins may reduce due to their adsorption on to the hydrophobic surfaces and degradation with proteases. Therefore, the combinational usage of bacteriocins with other preservation methods, such as high hydrostatic pressure, pulse electrical field or essential oils, were reported successful at inhibiting pathogens including the Gram negatives.

In the first part of the chapter, the general introduction to bacteriocins and new generation bacteriocins are discussed. In the second part, the applications of bacteriocins in different food systems have been explained and the combinational usage of bacteriocins together with different preservation methods have been exemplified.

Keywords

Bacteriocins Food preservation Lactic acid bacteria 

References

  1. Acedo JZ, Chiorean S, Vederas JC, van Belkum MJ (2018) The expanding structural variety among bacteriocins from Gram-positive bacteria. FEMS Microbiol Rev 42:6.805–6.828CrossRefGoogle Scholar
  2. Ahmad V, Khan MS, Jamal QMS, Alzohairy MA, Karaawi MAA, Siddiqui MU (2017) Antimicrobial potential of bacteriocins: in therapy, agriculture and food preservation. Int J Antimicrob Agents 49:1–11CrossRefPubMedGoogle Scholar
  3. Alvarez-Sieiro P, Montalbán-López M, Mu D, Kuipers OP (2016) Bacteriocins of lactic acid bacteria: extending the family. Appl Microbiol Biotechnol 100:2939–2951CrossRefPubMedPubMedCentralGoogle Scholar
  4. Amso Z, Bisset SW, Yang S-H, Harris PWR, Wright TH, Navo CD, Patchett ML, Norrisbc GL, Brimble MA (2018) Total chemical synthesis of glycocin F and analogues: S-glycosylation confers improved antimicrobial activity. Chem Sci 9:1686–1691CrossRefPubMedPubMedCentralGoogle Scholar
  5. Anastasiadou S, Papagianni M, Filiousis G, Ambrosiadis I, Koidis P (2008) Pediocin SA-1, an antimicrobial peptide from Pediococcus acidilactici NRRL B5627: production conditions, purification and characterization. Bioresour Technol 99:5384–5390CrossRefPubMedGoogle Scholar
  6. Arnison PG, Bibb MJ, Bierbaum G et al (2013) Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Nat Prod Rep 30(1):108–160CrossRefPubMedPubMedCentralGoogle Scholar
  7. Aymerich T, Holo H, Havarstein LS, Hugas M, Garriga M, Nes IF (1996) Biochemical and genetic characterization of enterocin A from Enterococcus faecium, a new antilisterial bacteriocin in the pediocin family of bacteriocins. Appl Environ Microbiol 62:1676–1682PubMedPubMedCentralGoogle Scholar
  8. Balciunas EM, Martinez FAC, Todorov SD, BDGM F, Converti A, Oliveira RPS (2013) Novel biotechnological applications of bacteriocins: a review. Food Control 32:134–142CrossRefGoogle Scholar
  9. Barefoot SF, Klaenhammer TR (1983) Detection and activity of lactacin B, a bacteriocin produced by Lactobacillus acidophilus. Appl Environ Microbiol 45:1808–1815PubMedPubMedCentralGoogle Scholar
  10. Barreteau H, Ghachi ME, Barnéoud-Arnoulet A, Sacco E et al (2012) Characterization of Colicin M and its orthologs targeting bacterial cell wall peptidoglycan biosynthesis. Microb Drug Resist 18(3):222–229CrossRefPubMedGoogle Scholar
  11. Bastos MCF, Coutinho BG, Varella-Coelho ML (2010) Lysostaphin: a staphylococcal bacteriolysin with potential clinical applications. Pharmaceuticals 3:1139–1161CrossRefPubMedPubMedCentralGoogle Scholar
  12. Bayro MJ, Mukhopadhyay J, Swapna GVT, Huang JY, Ma L, Sineva E, Dawson PE, Montelione GT, Ebright RH (2003) Structure of antibacterial peptide microcin J25: a 21-residue lariat protoknot. J Am Chem Soc 125:12382–12383CrossRefPubMedGoogle Scholar
  13. Behrens HM, Six A, Walker D, Kleanthous C (2017) The therapeutic potential of bacteriocins as protein antibiotics. Emerg Topics Life Sci 1:65–74CrossRefGoogle Scholar
  14. Beukes M, Bierbaum G, Sahl HG, Hastings JW (2000) Purification and partial characterization of a murein hydrolase, millericin B, produced by Streptococcus milleri NMSCC 061. Appl Environ Microbiol 66:23–28CrossRefPubMedPubMedCentralGoogle Scholar
  15. Bharti V, Mahta A, Singh S, Jain N, Hirwal L, Mehta S (2015) Bacteriocin: a novel approach for preservation of food. Int J Pharm Pharm Sci 7(9):20–29Google Scholar
  16. Brown CL, Smith K, McCaughey L, Walker D (2012) Colicin-like bacteriocins as novel therapeutic agents for the treatment of chronic biofilm-mediated infection. Biochem Soc Trans 40:1549–1552CrossRefPubMedGoogle Scholar
  17. Burgos MJG, Pulido RP, Aguayo MCL, Gálvez A, Lucas R (2014) The cyclic antibacterial peptide enterocin AS-48: isolation, mode of action, and possible food applications. Int J Mol Sci 15:22706–22727CrossRefGoogle Scholar
  18. Cascales E, Buchanan SK, Duche D, Kleanthous C, Lloubès R, Postle K, Riley M, Slatin S, Cavard D (2007) Colicin biology. Microbiol Mol Biol Rev 71:158–229CrossRefPubMedPubMedCentralGoogle Scholar
  19. Cavera VL, Arthura TD, Kashtanov D, Chikindas ML (2015) Bacteriocins and their position in the next wave of conventional antibiotics. Int J Antimicrob Agents 46:494–501CrossRefPubMedGoogle Scholar
  20. Chalón MC, Acuña L, Morero RD, Minahk CJ, Bellomio A (2012) Membrane-active bacteriocins to control Salmonella in foods: are they the definite hurdle? Food Res Int 45:735–744CrossRefGoogle Scholar
  21. Chen Y, Ludescher RD, Montville TJ (1997) Electrostatic interactions, but not the YGNGV consensus motif, govern the binding of pediocin PA-1 and its fragments to phospholipid vesicles. Appl Environ Microbiol 63:4770–4777PubMedPubMedCentralGoogle Scholar
  22. Chikindas ML, Weeks R, Drider D, Chistyakov VA, Dicks LMT (2018) Functions and emerging applications of bacteriocins. Curr Opin Biotechnol 49:23–28CrossRefPubMedGoogle Scholar
  23. Collin F, Thompson RE, Jolliffe KA, Payne RJ, Maxwell A (2013) Fragments of the bacterial toxin microcin B17 as Gyrase poisons. PLoS One 8(4):e61459CrossRefPubMedPubMedCentralGoogle Scholar
  24. Cotter PD, Hill C, Ross RP (2005) Bacteriocins: developing innate immunity for food. Nat Rev Microbiol 3:777–788CrossRefPubMedGoogle Scholar
  25. Martínez-Cuesta MC, Kok J, Herranz E, Pelaez C, Requena T, Buist G (2000) Requirement of autolytic activity for bacteriocin induced lysis. Appl Environ Microbiol 69:3174–3179CrossRefGoogle Scholar
  26. Daba GB, Ishibashi N, Gong X, Taki H, Yamashiro K, Lim YY, Zendo T, Sonomoto K (2018) Characterisation of the action mechanism of a Lactococcus-specific bacteriocin, lactococcin Z. J Biosci Bioeng 126(5):603–610CrossRefPubMedGoogle Scholar
  27. Dal Bello B, Cocolin L, Zeppa G, Field D, Cotter PD, Hill C (2012) Technological characterization of bacteriocin producing Lactococcus lactis strains employed to control Listeria monocytogenes in Cottage cheese. Int J Food Microbiol 153:58–65CrossRefPubMedGoogle Scholar
  28. De Vuyst L, Leroy F (2007) Bacteriocins from lactic acid bacteria: production, purification, and food applications. J Mol Microbiol Biotechnol 13:194–199CrossRefPubMedGoogle Scholar
  29. Delgado MA, Vincent PA, Farías RN, Salomón RA (2005) YojI of Escherichia coli functions as a microcin J25 efflux pump. J Bacteriol 187(10):3465CrossRefPubMedPubMedCentralGoogle Scholar
  30. Delves-Broughton J, Blackburn P, Evans RJ, Hugenholtz J (1996) Applications of the bacteriocin, nisin. Antonie Van Leeuwenhoek 69(2):193–202CrossRefPubMedGoogle Scholar
  31. Dimov S, Ivanova P, Harizanova N (2005) Genetics of bacteriocins biosynthesis by lactic acid bacteria. Biotechnol Biotechnol Equipment 19(2):4–10CrossRefGoogle Scholar
  32. Drider D, Fimland G, Hechard Y, McMullen LM, Prevost H (2006) The continuing story of class IIa bacteriocins. Microbiol Mol Biol Rev 70:564–582CrossRefPubMedPubMedCentralGoogle Scholar
  33. Duquesne S, Destoumieux-Garzón D, Peduzzi J, Rebuffat S (2007) Microcins, gene-encoded antibacterial peptides from enterobacteria. Nat Prod Rep 24:708–734CrossRefPubMedGoogle Scholar
  34. Ennahar S, Sonomoto K, Ishizaki A (1999) Class IIa bacteriocins from lactic acid bacteria: antibacterial activity and food preservation. J Biosci Bioeng 87:705–716CrossRefPubMedGoogle Scholar
  35. Field D, Gaudin N, Lyons F, O’Connor PM, Cotter PD, Hill C (2015) A bioengineered nisin derivative to control biofilms of Staphylococcus pseudintermedius. PLoS One 10(3):e0119684.  https://doi.org/10.1371/journal.pone.0119684CrossRefPubMedPubMedCentralGoogle Scholar
  36. Field D, Ross RP, Hill C (2018) Developing bacteriocins of lactic acid bacteria into next generation biopreservatives. Curr Opin Food Sci 20:1–6CrossRefGoogle Scholar
  37. Gabrielsen C, Brede DA, Nes IF, Diep DB (2014) Circular bacteriocins: biosynthesis and mode of action. Appl Environ Microbiol 80:6854–6862CrossRefPubMedPubMedCentralGoogle Scholar
  38. Guilhelmelli F, Vilela N, Albuquerque P, Derengowski LS, Silva-Pereira I, Kyaw CM (2013) Antibiotic development challenges the various mechanisms of action of antimicrobial peptides and of bacterial resistance. Front Microbiol 4:354CrossRefGoogle Scholar
  39. Hastings JW, Sailer M, Johnson K, Roy KL, Vederas JC, Stiles ME (1991) Characterization of leucocin A-UAL 187 and cloning of the bacteriocin gene from Leuconostoc gelidum. J Bacteriol 173:7491–7500CrossRefPubMedPubMedCentralGoogle Scholar
  40. Hechard Y, Derijard B, Letellier F, Cenatiempo Y (1992) Characterization and purification of mesentericin Y105, an anti-Listeria bacteriocin from Leuconostoc mesenteroides. J Gen Microbiol 138:2725–2731CrossRefPubMedGoogle Scholar
  41. Henderson JT, Chopko AL, Van Wasserman PD (1992) Purification and primary structure of pediocin PA-1 produced by Pediococcus acidilactici PAC1.0. Arch Biochem Biophys 295:5–12CrossRefPubMedGoogle Scholar
  42. Heng NCK, Tagg JR (2006) What’s in a name? Class distinction for bacteriocins. Nat Rev Microbiol 4:160.  https://doi.org/10.1038/nrmicro1273-c1CrossRefGoogle Scholar
  43. Heng NCK, Wescobre PA, Burton JP, Jack RW, Tang JR (2007) The diversity of bacteriocins in Gram-positive bacteria. In: Riley MA, Chavan MA (eds) Bacteriocins: ecology and evolution. Springer, Berlin, pp 39–63Google Scholar
  44. Hill C, Nes I N, Ross R P (2011) Bacteriocins. Paper presented the 10th LAB symposium: thirty years of research on lactic acid bacteria, August 28–September, 2011, Netherlands, p 37–56Google Scholar
  45. Iwatani S, Ishibashi N, Flores FP, Zendo T, Nakayama J, Sonomoto K (2016) LnqR, a TetR-family transcriptional regulator, positively regulates lacticin Q production in Lactococcus lactis QU 5. FEMS Microbiol Lett 363:fnw200CrossRefPubMedGoogle Scholar
  46. Jack RW, Tagg JR, Ray B (1995) Bacteriocins of gram positive bacteria. Microbiol Rev 59:171–200PubMedPubMedCentralGoogle Scholar
  47. Jimenez MA, Barrachi-Saccilotto AC, Valdivia E, Maqueda M, Rico M (2005) Design, NMR characterization and activity of a 21-residue peptide fragment of bacteriocin AS-48 containing its putative membrane interacting region. J Pept Sci 11:29–36CrossRefPubMedGoogle Scholar
  48. Joerger MC, Klaenhammer TR (1986) Characterization and purification of helveticin J and evidence for a chromosomally determined bacteriocin produced by Lactobacillus helveticus 481. J Bacteriol 167:439–446CrossRefPubMedPubMedCentralGoogle Scholar
  49. Juturu W, Wu JC (2018) Microbial production of bacteriocins: latest research development and applications. Biotechnol Adv 36:2187–2200CrossRefPubMedGoogle Scholar
  50. Juven BJ, Meinersmann RJ, Stern NJ (1991) Antagonistic effects of lactobacilli and pediococci to control intestinal colonization by human enteropathogens in live poultry. J Appl Bacteriol 70(2):95–103CrossRefPubMedGoogle Scholar
  51. Kawulka K, Sprules T, McKay RT, Mercier P, Diaper CM, Zuber P, Vederas JC (2003) Structure of subtilosin A, an antimicrobial peptide from Bacillus subtilis with unusual posttranslational modifications linking cysteine sulfurs to alpha-carbons of phenylalanine and threonine. J Am Chem Soc 125:4726–4727CrossRefPubMedGoogle Scholar
  52. Kim YC, Tarr AW, Penfold CN (2014) Colicin import into E. coli cells: a model system for insights into theimport mechanisms of bacteriocins. Biochim Biophys Acta 1843:1717–1731CrossRefPubMedGoogle Scholar
  53. Klaenhammer TR (1993) Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol Rev 12:39–85CrossRefPubMedGoogle Scholar
  54. Lagos R, Tello M, Mercado G, García V, Monasterio O (2009) Antibacterial and antitumorigenic properties of microcin E492, a pore-forming bacteriocin. Curr Pharm Biotechnol 10:74–85CrossRefPubMedGoogle Scholar
  55. Madera C, García P, Rodríguez A, Suárez JE, Martínez B (2009) Prophage induction in Lactococcus lactis by the bacteriocin Lactococcin 972. Int J Food Microbiol 129:99–102CrossRefPubMedGoogle Scholar
  56. Maldonado-Barragán A, Cárdenas N, Martínez B, Ruiz-Barba JL, Fernández-Garayzábal JF, Rodríguez JM, Gibelloe A (2013) Garvicin A, a novel Class IId bacteriocin from Lactococcus garvieae that inhibits septum formation in L. garvieae strains. Appl Environ Microbiol 79(14):4336–4346CrossRefPubMedPubMedCentralGoogle Scholar
  57. Martínez B, Böttiger T, Schneider T, Rodríguez A, Sahl HG, Wiedemann I (2008) Specific interaction of the unmodified bacteriocin Lactococcin 972 with the cell wall precursor lipid II. Appl Environ Microbiol 74:4666–4670CrossRefPubMedPubMedCentralGoogle Scholar
  58. Martínez B, Rodriguez A, Suarez JE (2000) Lactococcin 972, a bacteriocin that inhibit sseptum formation in lactococci. Microbiology 146:949–955CrossRefPubMedGoogle Scholar
  59. Martin-Visscher LA, Gong X, Duszyk M, Vederas JC (2009) The three-dimensional structure of carnocyclin a reveals that many circular bacteriocins share a common structural motif. J Biol Chem 284(42):28674–28681CrossRefPubMedPubMedCentralGoogle Scholar
  60. Masaki H, Ogawa T (2002) The modes of action of colicins E5 and D and related cytotoxic tRNases. Biochimie 84:433–438CrossRefPubMedGoogle Scholar
  61. Mesa-Pereira B, Rea MC, Cotter PD, Hill C, Ross RP (2018) Heterologous expression of biopreservative bacteriocins with a view to low cost production. Front Microbiol 9:1654CrossRefPubMedPubMedCentralGoogle Scholar
  62. Miller KW, Schamber R, Osmaağaoğlu O, Ray B (1998) Isolation and characterization of pediocin AcH chimeric protein mutants with altered bactericidal activity. Appl Environ Microbiol 64:1997–2005PubMedPubMedCentralGoogle Scholar
  63. Mills S, Serrano LM, Griffin C, O’Connor MP, Schaad G, Bruining C, Hill C, Ross RP, Meijer WC (2011) Inhibitory activity of Lactobacillus plantarum LMG p-26358 against Listeria innocua when used as an adjunt starter in the manufacture of cheese. Microb Cell Factories 10(1):S7CrossRefGoogle Scholar
  64. Mitra D, Pometto AL, Khanal SK, Karki B, Brehm-Stecher BF, van Leeuwen J (2010) Value-added production of nisin from soy whey. Appl Biochem Biotechnol 162:1819–1833CrossRefPubMedGoogle Scholar
  65. Mobius K, Schnegg A, Plato M, Fuchs MR, Savitsky A (2005) High-field EPR spectroscopy on transfer proteins in biological action. Acta Phys Pol A 108:2CrossRefGoogle Scholar
  66. Mogi T, Kita K (2009) Gramicidin S and polymyxins: the revival of cationic cyclic peptide antibiotics. Cell Mol Life Sci 66:3821–3826CrossRefPubMedGoogle Scholar
  67. Molloy EM, Casjens SR, Cox CL, Maxson T, Ethridge NA, Margos G, Fingerle V, Mitchell DA (2015) Identification of the minimal cytolytic unit for streptolysin S and an expansion of the toxin family. BMC Microbiol 15:141CrossRefPubMedPubMedCentralGoogle Scholar
  68. Münch D, Müller A, Schneider T, Kohl B, Wenzel M, Bandow JE, Maffioli S, Sosio M, Donadio S, Wimmer R, Sahl H-G (2014) The lantibiotic NAI-107 binds to bactoprenol-bound cell wall precursors and impairs membrane functions. J Biol Chem 289(17):12063–12076CrossRefPubMedPubMedCentralGoogle Scholar
  69. Nakamura K, Arakawa K, Kawai Y, Yasuta N, Chujo T, Watanabe M, Iıoka H, Tanıoka M, Nıshımura J, Kıtawaza H, Tsurumı K, Saıto T (2013) Food preservative potential of gassericin A-containing concentrate prepared from cheese whey culturesupernatant of Lactobacillus gasseri LA39. Anim Sci J 84:144–149CrossRefPubMedGoogle Scholar
  70. Nes IF, Yoon S, Diep DB (2007) Ribozomally synthesiszed antimicrobial peptides (bacteriocins) in lactic acid bacteria. Food Sci Biotechnol 16(5):675–690Google Scholar
  71. Nieto-Lozano JC, Reguera-Useros JI, Pelaez-Martinez MC, Sacristan-Perez-Minayo G, Gutierrez-Fernandez AJ, De La Torre AH (2010) The effect of the pediocin PA-1 produced by Pediococcus acidilactici against Listeria monocytogenes and Clostridium perfringens in Spanish dry-fermented sausages and frankfurters. Food Control 21:679–685CrossRefGoogle Scholar
  72. Nissen-Meyer J, Rogne P, Oppegard C, Haugen HS, Kristiansen PE (2009) Structure-function relationships of the non-lanthionine-containing peptide (class II) bacteriocins produced by gram-positive bacteria. Curr Pharm Biotechnol 10:19–37CrossRefPubMedGoogle Scholar
  73. O’Shea EF, Cotter PD, Ross RP, Hill C (2013) Strategies to improve the bacteriocin protection provided by lactic acid bacteria. Curr Opin Biotechnol 24:130–134CrossRefGoogle Scholar
  74. O’Connor MA, Ross PR, Hill C, Cotter PD (2015) Antimicrobial antagonists against food pathogens: a bacteriocin perspective. Curr Opin Food Sci 2:51–57CrossRefGoogle Scholar
  75. Oscariz JC, Pisabarro AG (2001) Classification and mode of action of membrane-active bacteriocins produced by Gram positive bacteria. Int Microbiol 4:13–19PubMedGoogle Scholar
  76. Padmavathi PVL, Steinhoff H-J (2008) Conformation of the closed channel state of colicin A in proteoliposomes: an umbrella model. J Mol Biol 378:204–214CrossRefPubMedGoogle Scholar
  77. Pag U, Sahl HG (2002) Multiple activities in lantibiotics–models for the design of novel antibiotics? Curr Pharm Des 8:815–833CrossRefPubMedGoogle Scholar
  78. Papadakos G, Wojdyla JA, Kleanthous C (2012) Nuclease colicins and their immunity proteins. Q Rev Biophys 45(1):57–103CrossRefPubMedGoogle Scholar
  79. Papagianni M (2003) Ribosomally synthesized peptides with antimicrobial properties: biosynthesis, structure, function, and applications. Biotechnol Adv 21:465–499CrossRefPubMedGoogle Scholar
  80. Perez RH, Zendo T, Sonomoto K (2018) Circular and leaderless bacteriocins: biosynthesis, mode of action, applications and prospects. Front Microbiol 9:2085.  https://doi.org/10.3389/fmicb.2018.02085CrossRefPubMedPubMedCentralGoogle Scholar
  81. Perez RH, Perez MTM, Elegado FB (2015) Bacteriocins from lactic acid bacteria: a review of biosynthesis, mode of action, fermentative production, uses, and prospects. Int J Philippine Sci Technol 8:2CrossRefGoogle Scholar
  82. Prudêncio CV, dos Santos MT, Vanetti MCD (2015) Strategies for the use of bacteriocins in Gram-negative bacteria relevance in food microbiology. Food Sci Technol 52(9):5408–5417Google Scholar
  83. Rea MC, Ross RP, Cotter PD, Hill C (2011) Classification of bacteriocins from Gram-positive bacteria. In: Drider D, Rebuffat S (eds) Prokaryotic antimicrobial peptides from genes to applications. Springer, New York, pp 29–53CrossRefGoogle Scholar
  84. Rebuffat S (2016) Microcins and other bacteriocins: bridging the gaps between killing stategies, ecology and applications. In: Dorit RL, Roy SM, Riley MA (eds) The bacteriocins: current knowledge and future prospects. Caister Academic Press, Wymondham, pp 11–34CrossRefGoogle Scholar
  85. Sarika AR, Lipton AP, Aishwarya MS, Dhivya RS (2012) Isolation of a bacteriocin-producing Lactococcus lactis and application of its bacteriocin to manage spoilage bacteria in high-value marine fish under different storage temperatures. Appl Biochem Biotechnol 167:1280–1289CrossRefPubMedGoogle Scholar
  86. Siegers K, Heinzmann S, Entian KD (1996) Biosynthesis of lantibiotic nisin. Posttranslational modifications of its prepeptide occurs at a multimeric membrane associated lanthionine synthetase complex. J Biol Chem 271:12294–12301CrossRefPubMedGoogle Scholar
  87. Silva CCG, Silva SPM, Ribeiro SC (2018) Application of bacteriocins and protective cultures in dairy food preservation. Front Microbiol 9:594CrossRefPubMedPubMedCentralGoogle Scholar
  88. Simmonds RS, Simpson WJ, Tagg JR (1997) Cloning and sequence analysis of zooA, a Streptococcus zooepidemicus gene encoding a bacteriocin-like inhibitory substance having a domain structure similar to that of lysostaphin. Gene 189:255–261CrossRefPubMedGoogle Scholar
  89. Simsek O, Saris PEJ (2009) Cycle changing the medium results in increased nisin productivity per cell in Lactococcus lactis. Biotechnol Lett 31:415–421CrossRefPubMedGoogle Scholar
  90. Sullivan A, Nord CE (2005) Probiotics and gastrointestinal diseases. J Int Med 257:78–92CrossRefGoogle Scholar
  91. Thomsen TT, Mojsoska B, Cruz JCS, Donadio S, Jenssen H, Løbner-Olesen A, Rewitz K (2016) The lantibiotic NAI-107 efficiently rescues Drosophila melanogaster from infection with methicillin-resistant Staphylococcus aureus USA300. Antimicrob Agents Chemother 60:5427–5436CrossRefPubMedPubMedCentralGoogle Scholar
  92. Tichaczek PS, Nissenmeyer J, Nes IF, Vogel RF, Hammes WP (1992) Characterization of the bacteriocins curvacin a from Lactobacillus curvatus Lth1174 and sakacin-P from Lb. sake Lth673. Syst Appl Microbiol 15:460–468CrossRefGoogle Scholar
  93. Todorov SD (2009) Bacteriocins from Lactobacillus plantarum—production, genetic organization and mode of action. Braz J Microbiol 40:209–221CrossRefPubMedPubMedCentralGoogle Scholar
  94. Towle KM, Vederas JC (2017) Structural features of many circular and leaderless bacteriocins are similar to those in saposins and saposin-like peptides. Med Chem Commun 2017(8):276–285CrossRefGoogle Scholar
  95. Twomey D, Ross RP, Ryan M, Meaney B, Hill C (2002) Lantibiotics produced by lactic acid bacteria: structure, function and applications. Antonie Van Leeuwenhoek 82:165–185CrossRefPubMedGoogle Scholar
  96. Uteng M, Hauge HH, Markwick PRL, Fimland G, Mantzilas D, Nissen-Meyer J, Muhle-Goll C (2003) Three-dimensional structure in lipid micelles of the pediocin-like antimicrobial peptide Sakacin P and a Sakacin P variant that is structurally stabilized by an inserted C-terminal disulfide bridge. Biochemistry 42:11417–11426CrossRefPubMedGoogle Scholar
  97. Valdes-Stauber N, Scherer S (1994) Isolation and characterization of Linocin M18, a bacteriocin produced by Brevibacterium linens. Appl Environ Microbiol 60:3809–3814PubMedPubMedCentralGoogle Scholar
  98. Van Belkum MJ, Martin-Visscher LA, Vederas JC (2011) Structure and genetics of circular bacteriocins. Trends Microbiol 19(8):411–418CrossRefPubMedGoogle Scholar
  99. Varella Coelho ML, Duarte AF, Bastos MCF (2017) Bacterial labionin-containing peptides and sactibiotics: unusual types of antimicrobial peptides with potential use in clinical settings. Curr Top Med Chem 17:1–22CrossRefGoogle Scholar
  100. Vasilchenko AS, Valyshev AV (2018) Pore-forming bacteriocins: structural–functional relationships. Arch Microbiol.  https://doi.org/10.1007/s00203-018-1610-3
  101. Wescombe PA, Upton M, Dierksen KP, Ragland NL, Sivabalan S, Wirawan RE, Inglis MA, Moore CJ, Walker GV, Chilcott CN, Jenkinson HF, Tagg JR (2006) Production of the lantibiotic salivaricin A and its variants by oral streptococci and use of a specific induction assay to detect their presence in human saliva. Appl Environ Microbiol 72:1459–1466CrossRefPubMedPubMedCentralGoogle Scholar
  102. Wiley JM, van der Donk WA (2007) Lantibiotics: peptides of diverse structure and function. Ann Rev Microbiol 61:477–501CrossRefGoogle Scholar
  103. Yang S-C, Lin C-H, Sung CT, Fang JY (2014) Antibacterial activities of bacteriocins: application in foods and pharmaceuticals. Frontiers in microbiology. Food Microbiol 5:Article241Google Scholar
  104. Yıldırım Z, Öncül N, Yıldırım M, Karabıyıklı Ş (2016) Application of lactococcin BZ and enterocin KP against Listeria monocytogenes in milk as biopreservation. Agents Acta Alimentaria 45(4):486–492CrossRefGoogle Scholar
  105. Zacharof MP, Lovitt RW (2012) Bacteriocins produced by lactic acid bacteria: a review article. APCBEE Procedia 2:50–56CrossRefGoogle Scholar
  106. Zamaroczy M, Mora L (2012) Hijacking cellular functions for processing and delivery of colicins E3 and D into the cytoplasm. Biochem Soc Trans 40:6CrossRefGoogle Scholar
  107. Zendo T (2013) Screening and characterization of novel bacteriocins from lactic acid bacteria. Biosci Biotechnol Biochem 77(5):893–899CrossRefPubMedGoogle Scholar
  108. Zou J, Jiang H, Cheng H, Fang J, Huang G (2018) Strategies for screening, purification and characterization of bacteriocins. Int J Biol Macromol 117:781–789CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Halil İbrahim Kaya
    • 1
    Email author
  • Burcu Özel
    • 2
  • Ömer Şimşek
    • 1
  1. 1.Department of Food Engineering, Faculty of EngineeringPamukkale UniversityDenizliTurkey
  2. 2.Department of Food Processing, Food Technology Program, Çal Vocational SchoolPamukkale UniversityDenizliTurkey

Personalised recommendations