Advertisement

Next-Generation Probiotics Their Molecular Taxonomy and Health Benefits

  • Shams Tabrez Khan
  • Abdul Malik
Chapter

Abstract

The concept of probiotics although perceived as new is more than a century old. Since the early studies of the Elie Metchnikoff in 1903, a number of commercial products containing probiotics are in the market. The recent success of converting probiotic products into commercial reality was achieved by the scientists like Minoru Shirota and Kellog. Minoru Shirota is a Japanese scientist who successfully demonstrated the health benefits of probiotics and commercialized the globally known probiotic drink Yakult. This renewed interest in probiotics is spurred by the recent advances made in understanding the human microbiome and its role in human health. The link between the gut microbiome and human health is becoming increasingly clear and is well described. Nevertheless, the gut microbiome is continuously influenced by a number of factors like diet, lifestyle and consumption of antibiotics. A healthy gut microbiome can be retained and maintained by using various probiotics. Moreover, the probiotic microorganisms are no more limited to a few conventionally used bacteria and are being currently represented by more phylogenetically diverse microorganisms than previously thought. These probiotic microorganisms include conventionally used Lactic acid bacteria, like Lactobacillus and recently identified probiotic bacteria like Akkermansia muciniphila, Bifidobacterium infantis, Bacteroides fragilis, Clostridium butyricum, Faecalibacterium prausnitzii and Streptococcus thermophiles etc. Many of these probiotic strains have a shared mechanism of action, while strain specific, species-specific or genus-specific probiotic effects have also been documented. Probiotics are administered as live cultures or as spores, directly or through fermented dairy products, food, and drinks. Probiotics based therapies like fecal microbiota transplant are also being used successfully for treating medical conditions and diseases like diarrhea, constipation, vaginitis, necrotizing enterocolitis, inflammatory bowel disease, Clostridium difficile infection, and others. Reports showing a clear role of probiotics in immunomodulation, prevention of cardiovascular diseases and even cancer are also emerging. Yet, a number of microorganisms in the gut remain uncultured and many candidate probiotic microorganisms remain poorly identified, requiring correct identification and a rigorous evaluation as probiotics. Probiotics may be a century old but require fresh attention keeping in view the recent advances made in understanding the gut microbiome and the role of these microorganisms in human health.

Keywords

Probiotics Health benefits Molecular taxonomy Microorganisms 

References

  1. Ahmed FE (2003) Genetically modified probiotics in foods. Trends Biotechnol 21(11):491–497.  https://doi.org/10.1016/j.tibtech.2003.09.006CrossRefPubMedGoogle Scholar
  2. Amoretti M, Amsler C, Bonomi G, Bouchta A, Bowe P, Carraro C, Cesar CL, Charlton M, Collier MJT, Doser M, Filippini V, Fine KS, Fontana A, Fujiwara MC, Funakoshi R, Genova P, Hangst JS, Hayano RS, Holzscheiter MH, Jørgensen LV, Lagomarsino V, Landua R, Lindelöf D, Rizzini EL, Macrì M, Madsen N, Manuzio G, Marchesotti M, Montagna P, Pruys H, Regenfus C, Riedler P, Rochet J, Rotondi A, Rouleau G, Testera G, Variola A, Watson TL, van der Werf DP (2002) Production and detection of cold antihydrogen atoms. Nature 419:456.  https://doi.org/10.1038/nature01096CrossRefPubMedGoogle Scholar
  3. Anadón A, Martínez-Larrañaga MR, Ares I, Martínez MA (2016) Chapter 54 - Prebiotics: safety and toxicity considerations. In: Gupta RC (ed) Nutraceuticals. Academic Press, Boston, pp 757–775.  https://doi.org/10.1016/B978-0-12-802147-7.00054-1CrossRefGoogle Scholar
  4. Anhê FF, Roy D, Pilon G, Dudonné S, Matamoros S, Varin TV, Garofalo C, Moine Q, Desjardins Y, Levy E, Marette A (2015) A polyphenol-rich cranberry extract protects from diet-induced obesity, insulin resistance and intestinal inflammation in association with increased Akkermansia spp. population in the gut microbiota of mice. Gut 64(6):872–883.  https://doi.org/10.1136/gutjnl-2014-307142CrossRefPubMedGoogle Scholar
  5. Arrieta M-C, Stiemsma LT, Dimitriu PA, Thorson L, Russell S, Yurist-Doutsch S, Kuzeljevic B, Gold MJ, Britton HM, Lefebvre DL, Subbarao P, Mandhane P, Becker A, McNagny KM, Sears MR, Kollmann T, Mohn WW, Turvey SE, Brett Finlay B (2015) Early infancy microbial and metabolic alterations affect risk of childhood asthma. J Sci Transl Med 7(307):307ra152.  https://doi.org/10.1126/scitranslmed.aab2271CrossRefGoogle Scholar
  6. Barrett E, Ross RP, O’Toole PW, Fitzgerald GF, Stanton C (2012) γ-Aminobutyric acid production by culturable bacteria from the human intestine. J Appl Microbiol 113(2):411–417.  https://doi.org/10.1111/j.1365-2672.2012.05344.xCrossRefPubMedGoogle Scholar
  7. Begley M, Hill C, Gahan CGM (2006) Bile salt hydrolase activity in probiotics. J Appl Environ Microbiol 72(3):1729–1738.  https://doi.org/10.1128/AEM.72.3.1729-1738.2006CrossRefGoogle Scholar
  8. Behnsen J, Deriu E, Sassone-Corsi M, Raffatellu M (2011) Probiotics: properties, examples, and specific applications. Cold Spring Harb Perspect Med 3(3):a010074–a010074.  https://doi.org/10.1101/cshperspect.a010074CrossRefGoogle Scholar
  9. Bermudez-Brito M, Plaza-Diaz J, Munoz-Quezada S, Gomez-Llorente C, Gil A (2012) Probiotic mechanisms of action. Ann Nutr Metab 61(2):160–174.  https://doi.org/10.1159/000342079CrossRefPubMedGoogle Scholar
  10. Boonaert CJP, Rouxhet PG (2000) Surface of lactic acid bacteria: relationships between chemical composition and physicochemical properties. J Appl Environ Microbiol 66(6):2548–2554.  https://doi.org/10.1128/AEM.66.6.2548-2554.2000CrossRefGoogle Scholar
  11. Boulangé CL, Neves AL, Chilloux J, Nicholson JK, Dumas M-E (2016) Impact of the gut microbiota on inflammation, obesity, and metabolic disease. Genome Med 8(1):42–42.  https://doi.org/10.1186/s13073-016-0303-2CrossRefPubMedPubMedCentralGoogle Scholar
  12. Burki TK (2018) Of milk and microbes. Lancet Gastroenterol Hepatol 3(1):16.  https://doi.org/10.1016/S2468-1253(17)30372-2CrossRefGoogle Scholar
  13. Bustos AY, Font de Valdez G, Fadda S, Taranto MP (2018) New insights into bacterial bile resistance mechanisms: the role of bile salt hydrolase and its impact on human health. Food Res Int 112:250–262.  https://doi.org/10.1016/j.foodres.2018.06.035CrossRefPubMedGoogle Scholar
  14. Cait A, Hughes MR, Antignano F, Cait J, Dimitriu PA, Maas KR, Reynolds LA, Hacker L, Mohr J, Finlay BB, Zaph C, McNagny KM, Mohn WW (2017) Microbiome-driven allergic lung inflammation is ameliorated by short-chain fatty acids. Mucosal Immunol 11:785.  https://doi.org/10.1038/mi.2017.75. https://www.nature.com/articles/mi201775#supplementary-informationCrossRefPubMedGoogle Scholar
  15. Callaway TR, Edrington TS, Anderson RC, Harvey RB, Genovese KJ, Kennedy CN, Venn DW, Nisbet DJ (2008) Probiotics, prebiotics and competitive exclusion for prophylaxis against bacterial disease. Anim Health Res Rev 9(2):217–225.  https://doi.org/10.1017/s1466252308001540CrossRefPubMedGoogle Scholar
  16. Campana R, van Hemert S, Baffone W (2017) Strain-specific probiotic properties of lactic acid bacteria and their interference with human intestinal pathogens invasion. Gut Pathog 9:12–12.  https://doi.org/10.1186/s13099-017-0162-4CrossRefPubMedPubMedCentralGoogle Scholar
  17. Cani PD, de Vos WM (2017) Next-generation beneficial microbes: the case of Akkermansia muciniphila. Front Microbiol 8:1765.  https://doi.org/10.3389/fmicb.2017.01765CrossRefPubMedPubMedCentralGoogle Scholar
  18. Cavallari JF, Fullerton MD, Duggan BM, Foley KP, Denou E, Smith BK, Desjardins EM, Henriksbo BD, Kim KJ, Tuinema BR, Stearns JC, Prescott D, Rosenstiel P, Coombes BK, Steinberg GR, Schertzer JD (2017) Muramyl dipeptide-based postbiotics mitigate obesity-induced insulin resistance via IRF4. Cell Metab 25(5):1063–1074.e1063.  https://doi.org/10.1016/j.cmet.2017.03.021CrossRefPubMedGoogle Scholar
  19. Chang AH, Parsonnet J (2010) Role of bacteria in oncogenesis. Clin Microbiol Rev 23(4):837–857.  https://doi.org/10.1128/CMR.00012-10CrossRefPubMedPubMedCentralGoogle Scholar
  20. Chimerel C, Emery E, Summers David K, Keyser U, Gribble Fiona M, Reimann F (2014) Bacterial metabolite indole modulates incretin secretion from intestinal enteroendocrine L cells. Cell Rep 9(4):1202–1208.  https://doi.org/10.1016/j.celrep.2014.10.032CrossRefPubMedPubMedCentralGoogle Scholar
  21. Cho I, Blaser MJ (2012) The human microbiome: at the interface of health and disease. Nat Rev Genet 13(4):260–270.  https://doi.org/10.1038/nrg3182CrossRefPubMedPubMedCentralGoogle Scholar
  22. Cotter PD, Ross RP, Hill C (2012) Bacteriocins—a viable alternative to antibiotics? Nat Rev Microbiol 11:95.  https://doi.org/10.1038/nrmicro2937CrossRefPubMedGoogle Scholar
  23. do Carmo FLR, Rabah H, De Oliveira Carvalho RD, Gaucher F, Cordeiro BF, da Silva SH, Le Loir Y, Azevedo V, Jan G (2018a) Extractable bacterial surface proteins in probiotic-host interaction. Front Microbiol 9:645–645.  https://doi.org/10.3389/fmicb.2018.00645CrossRefPubMedPubMedCentralGoogle Scholar
  24. do Carmo MS, Santos CID, Araujo MC, Giron JA, Fernandes ES, Monteiro-Neto V (2018b) Probiotics, mechanisms of action, and clinical perspectives for diarrhea management in children. Food Funct 9(10):5074–5095.  https://doi.org/10.1039/c8fo00376aCrossRefPubMedGoogle Scholar
  25. de Melo Pereira GV, de Oliveira Coelho B, Magalhaes Junior AI, Thomaz-Soccol V, Soccol CR (2018) How to select a probiotic? A review and update of methods and criteria. Biotechnol Adv 36(8):2060–2076.  https://doi.org/10.1016/j.biotechadv.2018.09.003CrossRefPubMedGoogle Scholar
  26. de Simone C (2019) The unregulated probiotic market. Clin Gastroenterol Hepatol 17:809.  https://doi.org/10.1016/j.cgh.2018.01.018CrossRefPubMedGoogle Scholar
  27. Dao MC, Everard A, Aron-Wisnewsky J, Sokolovska N, Prifti E, Verger EO, Kayser BD, Levenez F, Chilloux J, Hoyles L, Dumas M-E, Rizkalla SW, Doré J, Cani PD, Clément K (2016) Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut 65(3):426–436.  https://doi.org/10.1136/gutjnl-2014-308778CrossRefGoogle Scholar
  28. Dasgupta S, Erturk-Hasdemir D, Ochoa-Reparaz J, Reinecker H-C, Kasper Dennis L (2014) Plasmacytoid dendritic cells mediate anti-inflammatory responses to a gut commensal molecule via both innate and adaptive mechanisms. Cell Host Microbe 15(4):413–423.  https://doi.org/10.1016/j.chom.2014.03.006CrossRefPubMedPubMedCentralGoogle Scholar
  29. Delgado-Fernández P, Corzo N, Olano A, Hernández-Hernández O, Moreno FJ (2019) Effect of selected prebiotics on the growth of lactic acid bacteria and physicochemical properties of yoghurts. Int Dairy J 89:77–85.  https://doi.org/10.1016/j.idairyj.2018.09.003CrossRefGoogle Scholar
  30. Derrien M, van Hylckama Vlieg JE (2015) Fate, activity, and impact of ingested bacteria within the human gut microbiota. Trends Microbiol 23(6):354–366.  https://doi.org/10.1016/j.tim.2015.03.002CrossRefPubMedGoogle Scholar
  31. Diancourt L, Passet V, Chervaux C, Garault P, Smokvina T, Brisse S (2007) Multilocus sequence typing of Lactobacillus casei reveals a clonal population structure with low levels of homologous recombination. J Appl Environ Microbiol 73(20):6601–6611.  https://doi.org/10.1128/AEM.01095-07CrossRefGoogle Scholar
  32. Dobson A, Cotter PD, Ross RP, Hill C (2012) Bacteriocin production: a probiotic trait? Appl Environ Microbiol 78(1):1–6.  https://doi.org/10.1128/aem.05576-11CrossRefPubMedPubMedCentralGoogle Scholar
  33. Doron S, Snydman DR (2015) Risk and safety of probiotics. Clin Infect Dis 60(Suppl 2):S129–S134.  https://doi.org/10.1093/cid/civ085CrossRefPubMedPubMedCentralGoogle Scholar
  34. Durack J, Lynch SV (2019) The gut microbiome: relationships with disease and opportunities for therapy. J Exp Med 216(1):20–40.  https://doi.org/10.1084/jem.20180448CrossRefPubMedPubMedCentralGoogle Scholar
  35. Durack J, Kimes NE, Lin DL, Rauch M, McKean M, McCauley K, Panzer AR, Mar JS, Cabana MD, Lynch SV (2018) Delayed gut microbiota development in high-risk for asthma infants is temporarily modifiable by Lactobacillus supplementation. Nat Commun 9(1):707.  https://doi.org/10.1038/s41467-018-03157-4CrossRefPubMedPubMedCentralGoogle Scholar
  36. El Hage R, Hernandez-Sanabria E, Van de Wiele T (2017) Emerging trends in “Smart Probiotics”: functional consideration for the development of novel health and industrial applications. Front Microbiol 8:1889–1889.  https://doi.org/10.3389/fmicb.2017.01889CrossRefPubMedPubMedCentralGoogle Scholar
  37. Elshaghabee FMF, Rokana N, Gulhane RD, Sharma C, Panwar H (2017) Bacillus as potential probiotics: status, concerns, and future perspectives. Front Microbiol 8:1490–1490.  https://doi.org/10.3389/fmicb.2017.01490CrossRefPubMedPubMedCentralGoogle Scholar
  38. Finegold SM, Dowd SE, Gontcharova V, Liu C, Henley KE, Wolcott RD, Youn E, Summanen PH, Granpeesheh D, Dixon D, Liu M, Molitoris DR, Green JA 3rd (2010) Pyrosequencing study of fecal microflora of autistic and control children. Anaerobe 16(4):444–453.  https://doi.org/10.1016/j.anaerobe.2010.06.008CrossRefPubMedGoogle Scholar
  39. Foditsch C, Pereira RVV, Ganda EK, Gomez MS, Marques EC, Santin T, Bicalho RC (2016) Oral administration of faecalibacterium prausnitzii decreased the incidence of severe diarrhea and related mortality rate and increased weight gain in preweaned dairy heifers. PLoS One 10(12):e0145485.  https://doi.org/10.1371/journal.pone.0145485CrossRefGoogle Scholar
  40. Fong IW (2014) The role of microbes in common non-infectious diseases. Springer, New York.  https://doi.org/10.1007/978-1-4939-1670-2CrossRefGoogle Scholar
  41. Forsberg A, West CE, Prescott SL, Jenmalm MC (2016) Pre- and probiotics for allergy prevention: time to revisit recommendations? Clin Exp Allergy 46(12):1506–1521.  https://doi.org/10.1111/cea.12838CrossRefPubMedGoogle Scholar
  42. Fujimura KE, Sitarik AR, Havstad S, Lin DL, Levan S, Fadrosh D, Panzer AR, LaMere B, Rackaityte E, Lukacs NW, Wegienka G, Boushey HA, Ownby DR, Zoratti EM, Levin AM, Johnson CC, Lynch SV (2016) Neonatal gut microbiota associates with childhood multisensitized atopy and T cell differentiation. Nat Med 22:1187.  https://doi.org/10.1038/nm.4176. https://www.nature.com/articles/nm.4176#supplementary-informationCrossRefPubMedPubMedCentralGoogle Scholar
  43. Fuller R (1989) Probiotics in man and animals. J Appl Bacteriol 66(5):365–378CrossRefGoogle Scholar
  44. Gasbarrini G, Bonvicini F, Gramenzi A (2016) Probiotics history. J Clin Gastroenterol 50(Suppl 2).  https://doi.org/10.1097/mcg.0000000000000697. Proceedings from the 8th Probiotics, Prebiotics & New Foods for Microbiota and Human Health meeting held in Rome, Italy on September 13-15, 2015:S116-s119
  45. George Kerry R, Patra JK, Gouda S, Park Y, Shin H-S, Das G (2018) Benefaction of probiotics for human health: a review. J Food Drug Anal 26(3):927–939.  https://doi.org/10.1016/j.jfda.2018.01.002CrossRefPubMedGoogle Scholar
  46. Gibson GR, Roberfroid MB (1995) Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr 125(6):1401–1412.  https://doi.org/10.1093/jn/125.6.1401CrossRefPubMedGoogle Scholar
  47. Gill SR, Pop M, Deboy RT, Eckburg PB, Turnbaugh PJ, Samuel BS, Gordon JI, Relman DA, Fraser-Liggett CM, Nelson KE (2006) Metagenomic analysis of the human distal gut microbiome. Science 312(5778):1355–1359.  https://doi.org/10.1126/science.1124234CrossRefPubMedPubMedCentralGoogle Scholar
  48. Gorissen DM, Rutten NB, Oostermeijer CM, Niers LE, Hoekstra MO, Rijkers GT, van der Ent CK (2014) Preventive effects of selected probiotic strains on the development of asthma and allergic rhinitis in childhood. The Panda study. Clin Exp Allergy 44(11):1431–1433.  https://doi.org/10.1111/cea.12413CrossRefPubMedGoogle Scholar
  49. Gough E, Shaikh H, Manges AR (2011) Systematic review of intestinal microbiota transplantation (fecal bacteriotherapy) for recurrent Clostridium difficile infection. Clin Infect Dis 53(10):994–1002.  https://doi.org/10.1093/cid/cir632CrossRefPubMedGoogle Scholar
  50. Guarner F, Schaafsma GJ (1998) Probiotics. Int J Food Microbiol 39(3):237–238CrossRefGoogle Scholar
  51. Hanchi H, Mottawea W, Sebei K, Hammami R (2018) The genus enterococcus: between probiotic potential and safety concerns-an update. Front Microbiol 9:1791–1791.  https://doi.org/10.3389/fmicb.2018.01791CrossRefPubMedPubMedCentralGoogle Scholar
  52. Havenaar R, Huis In’t Veld JHJ (1992) Probiotics: a general view. In: Wood BJB (ed) The lactic acid bacteria, The lactic acid bacteria in health and disease, vol 1. Springer, Boston, pp 151–170.  https://doi.org/10.1007/978-1-4615-3522-5_6CrossRefGoogle Scholar
  53. Hayashi A, Sato T, Kamada N, Mikami Y, Matsuoka K, Hisamatsu T, Hibi T, Roers A, Yagita H, Ohteki T, Yoshimura A, Kanai T (2013) A single strain of clostridium butyricum induces intestinal IL-10-producing macrophages to suppress acute experimental colitis in mice. Cell Host Microbe 13(6):711–722.  https://doi.org/10.1016/j.chom.2013.05.013CrossRefPubMedGoogle Scholar
  54. Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, Morelli L, Canani RB, Flint HJ, Salminen S, Calder PC, Sanders ME (2014) Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol 11(8):506–514.  https://doi.org/10.1038/nrgastro.2014.66CrossRefPubMedGoogle Scholar
  55. Huang C-H, Li S-W, Huang L, Watanabe K (2018) Identification and classification for the Lactobacillus casei group. Front Microbiol 9:1974.  https://doi.org/10.3389/fmicb.2018.01974CrossRefPubMedPubMedCentralGoogle Scholar
  56. Huys G, Botteldoorn N, Delvigne F, De Vuyst L, Heyndrickx M, Pot B, Dubois J-J, Daube G (2013) Microbial characterization of probiotics--advisory report of the Working Group “8651 Probiotics” of the Belgian Superior Health Council (SHC). Mol Nutr Food Res 57(8):1479–1504.  https://doi.org/10.1002/mnfr.201300065CrossRefPubMedPubMedCentralGoogle Scholar
  57. Iannitti T, Palmieri B (2010) Therapeutical use of probiotic formulations in clinical practice. Clin Nutr 29(6):701–725.  https://doi.org/10.1016/j.clnu.2010.05.004CrossRefPubMedGoogle Scholar
  58. Isolauri E (2003) Probiotics for infectious diarrhoea. Gut 52(3):436–437CrossRefGoogle Scholar
  59. Ivanov II, Atarashi K, Manel N, Brodie EL, Shima T, Karaoz U, Wei D, Goldfarb KC, Santee CA, Lynch SV, Tanoue T, Imaoka A, Itoh K, Takeda K, Umesaki Y, Honda K, Littman DR (2009) Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139(3):485–498.  https://doi.org/10.1016/j.cell.2009.09.033CrossRefPubMedPubMedCentralGoogle Scholar
  60. Jäger R, Purpura M, Stone JD, Turner SM, Anzalone AJ, Eimerbrink MJ, Pane M, Amoruso A, Rowlands DS, Oliver JM (2016) Probiotic streptococcus thermophilus FP4 and bifidobacterium breve BR03 supplementation attenuates performance and range-of-motion decrements following muscle damaging exercise. Nutrients 8(10):642.  https://doi.org/10.3390/nu8100642CrossRefPubMedCentralGoogle Scholar
  61. Kang J, Chung W-H, Lim T-J, Whon TW, Lim S, Nam Y-D (2017) Complete genome sequence of Lactobacillus casei LC5, a potential probiotics for atopic dermatitis. Front Immunol 8:413–413.  https://doi.org/10.3389/fimmu.2017.00413CrossRefPubMedPubMedCentralGoogle Scholar
  62. Kau AL, Ahern PP, Griffin NW, Goodman AL, Gordon JI (2011) Human nutrition, the gut microbiome and the immune system. Nature 474(7351):327–336.  https://doi.org/10.1038/nature10213CrossRefPubMedPubMedCentralGoogle Scholar
  63. Kelly D, Conway S, Aminov R (2005) Commensal gut bacteria: mechanisms of immune modulation. Trends Immunol 26(6):326–333.  https://doi.org/10.1016/j.it.2005.04.008CrossRefPubMedGoogle Scholar
  64. Kelly CJ, Zheng L, Campbell Eric L, Saeedi B, Scholz Carsten C, Bayless Amanda J, Wilson Kelly E, Glover Louise E, Kominsky Douglas J, Magnuson A, Weir Tiffany L, Ehrentraut Stefan F, Pickel C, Kuhn Kristine A, Lanis Jordi M, Nguyen V, Taylor Cormac T, Colgan Sean P (2015) Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function. Cell Host Microbe 17(5):662–671.  https://doi.org/10.1016/j.chom.2015.03.005CrossRefPubMedPubMedCentralGoogle Scholar
  65. Kleerebezem M, Binda S, Bron PA, Gross G, Hill C, van Hylckama Vlieg JET, Lebeer S, Satokari R, Ouwehand AC (2019) Understanding mode of action can drive the translational pipeline towards more reliable health benefits for probiotics. Curr Opin Biotechnol 56:55–60.  https://doi.org/10.1016/j.copbio.2018.09.007CrossRefPubMedGoogle Scholar
  66. Kochan P, Chmielarczyk A, Szymaniak L, Brykczynski M, Galant K, Zych A, Pakosz K, Giedrys-Kalemba S, Lenouvel E, Heczko PB (2011) Lactobacillus rhamnosus administration causes sepsis in a cardiosurgical patient—is the time right to revise probiotic safety guidelines? Clin Microbiol Infect 17(10):1589–1592.  https://doi.org/10.1111/j.1469-0691.2011.03614.xCrossRefPubMedGoogle Scholar
  67. Kõll P, Mändar R, Marcotte H, Leibur E, Mikelsaar M, Hammarström L (2008) Characterization of oral lactobacilli as potential probiotics for oral health. Oral Microbiol Immunol 23:139.  https://doi.org/10.1111/j.1399-302X.2007.00402.xCrossRefPubMedGoogle Scholar
  68. Kudo M, Ishigatsubo Y, Aoki I (2013) Pathology of asthma. Front Microbiol 4:263.  https://doi.org/10.3389/fmicb.2013.00263CrossRefPubMedPubMedCentralGoogle Scholar
  69. Kollath W (1953) The increase of the diseases of civilization and their prevention. Munch Med Wochenschr 95:1260–1262PubMedGoogle Scholar
  70. Lebeer S, Bron PA, Marco ML, Van Pijkeren J-P, O’Connell Motherway M, Hill C, Pot B, Roos S, Klaenhammer T (2018) Identification of probiotic effector molecules: present state and future perspectives. Curr Opin Biotechnol 49:217–223.  https://doi.org/10.1016/j.copbio.2017.10.007CrossRefPubMedGoogle Scholar
  71. Lugli GA, Milani C, Duranti S, Mancabelli L, Mangifesta M, Turroni F, Viappiani A, van Sinderen D, Ventura M (2018) Tracking the taxonomy of the genus bifidobacterium based on a phylogenomic approach. Appl Environ Microbiol 84(4):AEM.02249-17.  https://doi.org/10.1128/aem.02249-17CrossRefGoogle Scholar
  72. Lukjancenko O, Ussery DW, Wassenaar TM (2012) Comparative genomics of Bifidobacterium, Lactobacillus and related probiotic genera. Microb Ecol 63(3):651–673.  https://doi.org/10.1007/s00248-011-9948-yCrossRefPubMedGoogle Scholar
  73. Mackowiak PA (2013) Recycling metchnikoff: probiotics, the intestinal microbiome and the quest for long life. Front Public Health 1:52–52.  https://doi.org/10.3389/fpubh.2013.00052CrossRefPubMedPubMedCentralGoogle Scholar
  74. Macpherson AJ, Harris NL (2004) Interactions between commensal intestinal bacteria and the immune system. Nat Rev Immunol 4(6):478–485.  https://doi.org/10.1038/nri1373CrossRefPubMedGoogle Scholar
  75. Martín R, Miquel S, Benevides L, Bridonneau C, Robert V, Hudault S, Chain F, Berteau O, Azevedo V, Chatel JM, Sokol H, Bermúdez-Humarán LG, Thomas M, Langella P (2017) Functional characterization of novel faecalibacterium prausnitzii strains isolated from healthy volunteers: a step forward in the use of F. prausnitzii as a next-generation probiotic. Front Microbiol 8:1226–1226.  https://doi.org/10.3389/fmicb.2017.01226CrossRefPubMedPubMedCentralGoogle Scholar
  76. Martoni CJ, Labbe A, Ganopolsky JG, Prakash S, Jones ML (2015) Changes in bile acids, FGF-19 and sterol absorption in response to bile salt hydrolase active L. reuteri NCIMB 30242. Gut Microbes 6(1):57–65.  https://doi.org/10.1080/19490976.2015.1005474CrossRefPubMedPubMedCentralGoogle Scholar
  77. Meng D, Zhu W, Ganguli K, Shi HN, Walker WA (2016) Anti-inflammatory effects of Bifidobacterium longum subsp infantis secretions on fetal human enterocytes are mediated by TLR-4 receptors. Am J Physiol Gastrointest Liver Physiol 311(4):G744–G753.  https://doi.org/10.1152/ajpgi.00090.2016CrossRefPubMedPubMedCentralGoogle Scholar
  78. Metchnikoff E (1903) The nature of man; studies in optimistic philosophy. The Knickerbocker PressGoogle Scholar
  79. Metchnikoff E (1907) The prolongation of life: optimistic studies. The Knickerbocker PressGoogle Scholar
  80. Mohanty D, Misra S, Mohapatra S, Sahu PS (2018) Prebiotics and synbiotics: recent concepts in nutrition. Food Biosci 26:152–160.  https://doi.org/10.1016/j.fbio.2018.10.008CrossRefGoogle Scholar
  81. Morelli L, Capurso L (2012) FAO/WHO guidelines on probiotics: 10 years later. J Clin Gastroenterol 46(Suppl):S1–S2.  https://doi.org/10.1097/MCG.0b013e318269fdd5CrossRefPubMedGoogle Scholar
  82. Morland C, Frøland A-S, Pettersen MN, Storm-Mathisen J, Gundersen V, Rise F, Hassel B (2018) Propionate enters GABAergic neurons, inhibits GABA transaminase, causes GABA accumulation and lethargy in a model of propionic acidemia. J Biochem J 475(4):749–758.  https://doi.org/10.1042/BCJ20170814CrossRefGoogle Scholar
  83. Murayama T-i, Mita N, Tanaka M, Kitajo T, Asano T, Mizuochi K, Kaneko K-i (1995) Effects of orally administered Clostridium butyricum MIYAIRI 588 on mucosal immunity in mice. Vet Immunol Immunopathol 48(3):333–342.  https://doi.org/10.1016/0165-2427(95)05437-BCrossRefPubMedGoogle Scholar
  84. Neal-McKinney JM, Lu X, Duong T, Larson CL, Call DR, Shah DH, Konkel ME (2012) Production of organic acids by probiotic lactobacilli can be used to reduce pathogen load in poultry. PLoS One 7(9):e43928–e43928.  https://doi.org/10.1371/journal.pone.0043928CrossRefPubMedPubMedCentralGoogle Scholar
  85. Neish AS (2009) Microbes in gastrointestinal health and disease. Gastroenterology 136(1):65–80.  https://doi.org/10.1053/j.gastro.2008.10.080CrossRefPubMedGoogle Scholar
  86. Nishiyama K, Sugiyama M, Mukai T (2016) Adhesion properties of lactic acid bacteria on intestinal mucin. Microorganisms 4(3):34.  https://doi.org/10.3390/microorganisms4030034CrossRefPubMedCentralGoogle Scholar
  87. Ogunremi OR, Sanni AI, Agrawal R (2015) Probiotic potentials of yeasts isolated from some cereal-based Nigerian traditional fermented food products. J Appl Microbiol 119(3):797–808.  https://doi.org/10.1111/jam.12875CrossRefPubMedGoogle Scholar
  88. Okada S, Kita H, George TJ, Gleich GJ, Leiferman KM (1997) Migration of eosinophils through basement membrane components in vitro: role of matrix metalloproteinase-9. Am J Respir Cell Mol Biol 17(4):519–528.  https://doi.org/10.1165/ajrcmb.17.4.2877CrossRefPubMedGoogle Scholar
  89. Orla-Jensen S (1924) La classification des bactéries lactiques. Lait 4(36):468–474CrossRefGoogle Scholar
  90. Otani IM, Anilkumar AA, Newbury RO, Bhagat M, Beppu LY, Dohil R, Broide DH, Aceves SS (2013) Anti-IL-5 therapy reduces mast cell and IL-9 cell numbers in pediatric patients with eosinophilic esophagitis. J Allergy Clin Immunol 131(6):1576–1582.  https://doi.org/10.1016/j.jaci.2013.02.042CrossRefPubMedPubMedCentralGoogle Scholar
  91. Ozen M, Dinleyici EC (2015) The history of probiotics: the untold story. Benefi Microb 6(2):159–165.  https://doi.org/10.3920/bm2014.0103CrossRefGoogle Scholar
  92. Pandiyan P, Conti HR, Zheng L, Peterson AC, Mathern DR, Hernández-Santos N, Edgerton M, Gaffen SL, Lenardo MJ (2011) CD4+CD25+Foxp3+ regulatory T cells promote Th17 cells in vitro and enhance host resistance in mouse Candida albicans Th17 cell infection model. Immunity 34(3):422–434CrossRefGoogle Scholar
  93. Papadimitriou K, Zoumpopoulou G, Foligné B, Alexandraki V, Kazou M, Pot B, Tsakalidou E (2015) Discovering probiotic microorganisms: in vitro, in vivo, genetic and omics approaches. Front Microbiol 6:58–58.  https://doi.org/10.3389/fmicb.2015.00058CrossRefPubMedPubMedCentralGoogle Scholar
  94. Parker EA, Roy T, D’Adamo CR, Wieland LS (2018) Probiotics and gastrointestinal conditions: an overview of evidence from the Cochrane Collaboration. Nutrition 45:125–134.e111.  https://doi.org/10.1016/j.nut.2017.06.024CrossRefPubMedGoogle Scholar
  95. Plovier H, Everard A, Druart C, Depommier C, Van Hul M, Geurts L, Chilloux J, Ottman N, Duparc T, Lichtenstein L, Myridakis A, Delzenne NM, Klievink J, Bhattacharjee A, van der Ark KCH, Aalvink S, Martinez LO, Dumas M-E, Maiter D, Loumaye A, Hermans MP, Thissen J-P, Belzer C, de Vos WM, Cani PD (2016) A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nat Med 23:107.  https://doi.org/10.1038/nm.4236. https://www.nature.com/articles/nm.4236#supplementary-informationCrossRefPubMedGoogle Scholar
  96. Podolsky SH (2012) Metchnikoff and the microbiome. Lancet 380(9856):1810–1811.  https://doi.org/10.1016/S0140-6736(12)62018-2CrossRefPubMedGoogle Scholar
  97. Quévrain E, Maubert MA, Michon C, Chain F, Marquant R, Tailhades J, Miquel S, Carlier L, Bermúdez-Humarán LG, Pigneur B, Lequin O, Kharrat P, Thomas G, Rainteau D, Aubry C, Breyner N, Afonso C, Lavielle S, Grill J-P, Chassaing G, Chatel JM, Trugnan G, Xavier R, Langella P, Sokol H, Seksik P (2016) Identification of an anti-inflammatory protein from Faecalibacterium prausnitzii, a commensal bacterium deficient in Crohn’s disease. Gut 65(3):415–425.  https://doi.org/10.1136/gutjnl-2014-307649CrossRefPubMedGoogle Scholar
  98. Rao AV, Bested AC, Beaulne TM, Katzman MA, Iorio C, Berardi JM, Logan AC (2009) A randomized, double-blind, placebo-controlled pilot study of a probiotic in emotional symptoms of chronic fatigue syndrome. Gut Pathog 1(1):6.  https://doi.org/10.1186/1757-4749-1-6CrossRefPubMedPubMedCentralGoogle Scholar
  99. Reid G (1999) The scientific basis for probiotic strains of Lactobacillus. Appl Environ Microbiol 65(9):3763–3766PubMedPubMedCentralGoogle Scholar
  100. Rezac S, Kok CR, Heermann M, Hutkins R (2018) Fermented foods as a dietary source of live organisms. Front Microbiol 9:1785–1785.  https://doi.org/10.3389/fmicb.2018.01785CrossRefPubMedPubMedCentralGoogle Scholar
  101. Ricci A, Allende A, Bolton D, Chemaly M, Davies R, Girones R, Herman L, Koutsoumanis K, Lindqvist R, Nørrung B, Robertson L, Ru G, Sanaa M, Simmons M, Skandamis P, Snary E, Speybroeck N, Ter Kuile B, Threlfall J, Wahlström H, Cocconcelli PS, Klein G, Prieto Maradona M, Querol A, Peixe L, Suarez JE, Sundh I, Vlak JM, Aguilera-Gómez M, Barizzone F, Brozzi R, Correia S, Heng L, Istace F, Lythgo C, Fernández Escámez PS (2017) Scientific opinion on the update of the list of QPS-recommended biological agents intentionally added to food or feed as notified to EFSA. EFSA J 15(3):e04664.  https://doi.org/10.2903/j.efsa.2017.4664CrossRefGoogle Scholar
  102. Rubio R, Jofré A, Martín B, Aymerich T, Garriga M (2014) Characterization of lactic acid bacteria isolated from infant faeces as potential probiotic starter cultures for fermented sausages. Food Microbiol 38:303–311.  https://doi.org/10.1016/j.fm.2013.07.015CrossRefPubMedGoogle Scholar
  103. Saarela MH (2019) Safety aspects of next generation probiotics. Curr Opin Food Sci 30:8–13.  https://doi.org/10.1016/j.cofs.2018.09.001CrossRefGoogle Scholar
  104. Saenz SA, Taylor BC, Artis D (2008) Welcome to the neighborhood: epithelial cell-derived cytokines license innate and adaptive immune responses at mucosal sites. Immunol Rev 226:172–190.  https://doi.org/10.1111/j.1600-065X.2008.00713.xCrossRefPubMedPubMedCentralGoogle Scholar
  105. Sakai T, Moteki Y, Takahashi T, Shida K, Kiwaki M, Shimakawa Y, Matsui A, Chonan O, Morikawa K, Ohta T, Ohshima H, Furukawa S (2018) Probiotics into outer space: feasibility assessments of encapsulated freeze-dried probiotics during 1 month’s storage on the International Space Station. Sci Rep 8(1):10687.  https://doi.org/10.1038/s41598-018-29094-2CrossRefPubMedPubMedCentralGoogle Scholar
  106. Salvetti E, Harris HMB, Felis GE, O’Toole PW (2018) Comparative genomics of the genus lactobacillus reveals robust phylogroups that provide the basis for reclassification. Appl Environ Microbiol 84(17):e00993-18.  https://doi.org/10.1128/aem.00993-18CrossRefPubMedPubMedCentralGoogle Scholar
  107. Sanders ME (2008) Probiotics: definition, sources, selection, and uses. Clin Infect Dis 46(Suppl 2):S58–S61.  https://doi.org/10.1086/523341. discussion S144-151CrossRefPubMedGoogle Scholar
  108. Schlee M, Harder J, Koten B, Stange EF, Wehkamp J, Fellermann K (2008) Probiotic lactobacilli and VSL#3 induce enterocyte beta-defensin 2. Clin Exp Immunol 151(3):528–535.  https://doi.org/10.1111/j.1365-2249.2007.03587.xCrossRefPubMedPubMedCentralGoogle Scholar
  109. Segovia SA, Vickers MH, Gray C, Zhang XD, Reynolds CM (2017) Conjugated linoleic acid supplementation improves maternal high fat diet-induced programming of metabolic dysfunction in adult male rat offspring. Sci Rep 7(1)Google Scholar
  110. Seki H, Shiohara M, Matsumura T, Miyagawa N, Tanaka M, Komiyama A, Kurata S (2003) Prevention of antibiotic-associated diarrhea in children by Clostridium butyricum MIYAIRI. Pediatr Int 45(1):86–90.  https://doi.org/10.1046/j.1442-200X.2003.01671.xCrossRefPubMedGoogle Scholar
  111. Siezen RJ, Wilson G (2010) Probiotics genomics. J Microbial Biotechnol 3(1):1–9.  https://doi.org/10.1111/j.1751-7915.2009.00159.xCrossRefGoogle Scholar
  112. Smits LP, Bouter KEC, de Vos WM, Borody TJ, Nieuwdorp M (2013) Therapeutic potential of fecal microbiota transplantation. Gastroenterology 145(5):946–953.  https://doi.org/10.1053/j.gastro.2013.08.058CrossRefGoogle Scholar
  113. Sokol H, Leducq V, Aschard H, Pham H-P, Jegou S, Landman C, Cohen D, Liguori G, Bourrier A, Nion-Larmurier I, Cosnes J, Seksik P, Langella P, Skurnik D, Richard ML, Beaugerie L (2017) Fungal microbiota dysbiosis in IBD. Gut 66(6):1039–1048.  https://doi.org/10.1136/gutjnl-2015-310746CrossRefPubMedGoogle Scholar
  114. Song H, Wang W, Shen B, Jia H, Hou Z, Chen P, Sun Y (2018) Pretreatment with probiotic Bifico ameliorates colitis-associated cancer in mice: transcriptome and gut flora profiling. Cancer Sci 109(3):666–677.  https://doi.org/10.1111/cas.13497CrossRefPubMedPubMedCentralGoogle Scholar
  115. Stanton C, Gardiner G, Meehan H, Collins K, Fitzgerald G, Lynch PB, Ross RP (2001) Market potential for probiotics. Am J Clin Nutr 73(2):476s–483s.  https://doi.org/10.1093/ajcn/73.2.476sCrossRefPubMedGoogle Scholar
  116. Stokholm J, Blaser MJ, Thorsen J, Rasmussen MA, Waage J, Vinding RK, Schoos A-MM, Kunøe A, Fink NR, Chawes BL, Bønnelykke K, Brejnrod AD, Mortensen MS, Al-Soud WA, Sørensen SJ, Bisgaard H (2018) Maturation of the gut microbiome and risk of asthma in childhood. Nat Commun 9(1):141.  https://doi.org/10.1038/s41467-017-02573-2CrossRefPubMedPubMedCentralGoogle Scholar
  117. Thaiss CA (2018) Microbiome dynamics in obesity. Science 362(6417):903–904.  https://doi.org/10.1126/science.aav6870CrossRefPubMedGoogle Scholar
  118. Tillisch K (2014) The effects of gut microbiota on CNS function in humans AU - Tillisch, Kirsten. Gut Microbes 5(3):404–410.  https://doi.org/10.4161/gmic.29232
  119. Truong DT, Tett A, Pasolli E, Huttenhower C, Segata N (2017) Microbial strain-level population structure and genetic diversity from metagenomes. Genome Res 27(4):626–638.  https://doi.org/10.1101/gr.216242.116CrossRefPubMedPubMedCentralGoogle Scholar
  120. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444:1027.  https://doi.org/10.1038/nature05414. https://www.nature.com/articles/nature05414#supplementary-informationCrossRefPubMedPubMedCentralGoogle Scholar
  121. Turpin W, Humblot C, Noordine M-L, Thomas M, Guyot J-P (2012) Lactobacillaceae and cell adhesion: genomic and functional screening. PLoS One 7(5):e38034.  https://doi.org/10.1371/journal.pone.0038034CrossRefPubMedPubMedCentralGoogle Scholar
  122. Umbrello G, Esposito S (2016) Microbiota and neurologic diseases: potential effects of probiotics. J Transl Med 14(1):298–298.  https://doi.org/10.1186/s12967-016-1058-7CrossRefPubMedPubMedCentralGoogle Scholar
  123. van Baarlen P, Wells JM, Kleerebezem M (2013) Regulation of intestinal homeostasis and immunity with probiotic lactobacilli. Trends Immunol 34(5):208–215.  https://doi.org/10.1016/j.it.2013.01.005CrossRefPubMedGoogle Scholar
  124. Vatanen T, Kostic Aleksandar D, d’Hennezel E, Siljander H, Franzosa Eric A, Yassour M, Kolde R, Vlamakis H, Arthur Timothy D, Hämäläinen A-M, Peet A, Tillmann V, Uibo R, Mokurov S, Dorshakova N, Ilonen J, Virtanen Suvi M, Szabo Susanne J, Porter Jeffrey A, Lähdesmäki H, Huttenhower C, Gevers D, Cullen Thomas W, Knip M, Xavier Ramnik J (2016) Variation in microbiome LPS immunogenicity contributes to autoimmunity in humans. Cell 165(4):842–853.  https://doi.org/10.1016/j.cell.2016.04.007CrossRefPubMedPubMedCentralGoogle Scholar
  125. Venugopalan V, Shriner KA, Wong-Beringer A (2010) Regulatory oversight and safety of probiotic use. Emerg Infect Dis 16(11):1661–1665.  https://doi.org/10.3201/eid1611.100574CrossRefPubMedPubMedCentralGoogle Scholar
  126. Villanueva-Millán MJ, Pérez-Matute P, Oteo JA (2015) Gut microbiota: a key player in health and disease. A review focused on obesity. J Physiol Biochem 71(3):509–525CrossRefGoogle Scholar
  127. Vlasova AN, Kandasamy S, Chattha KS, Rajashekara G, Saif LJ (2016) Comparison of probiotic lactobacilli and bifidobacteria effects, immune responses and rotavirus vaccines and infection in different host species. Vet Immunol Immunopathol 172:72–84.  https://doi.org/10.1016/j.vetimm.2016.01.003CrossRefPubMedPubMedCentralGoogle Scholar
  128. Vrieze A, Van Nood E, Holleman F, Salojärvi J, Kootte RS, Bartelsman JFWM, Dallinga-Thie GM, Ackermans MT, Serlie MJ, Oozeer R, Derrien M, Druesne A, Van Hylckama Vlieg JET, Bloks VW, Groen AK, Heilig HGHJ, Zoetendal EG, Stroes ES, de Vos WM, Hoekstra JBL, Nieuwdorp M (2012) Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology 143(4):913–916.e917.  https://doi.org/10.1053/j.gastro.2012.06.031CrossRefGoogle Scholar
  129. Wang L, Christophersen CT, Sorich MJ, Gerber JP, Angley MT, Conlon MA (2012) Elevated fecal short chain fatty acid and ammonia concentrations in children with autism spectrum disorder. Dig Dis Sci 57(8):2096–2102.  https://doi.org/10.1007/s10620-012-2167-7CrossRefPubMedGoogle Scholar
  130. Wang Z, Friedrich C, Hagemann SC, Korte WH, Goharani N, Cording S, Eberl G, Sparwasser T, Lochner M (2014) Regulatory T cells promote a protective Th17-associated immune response to intestinal bacterial infection with C. rodentium. Mucosal Immunol 7(6):1290–1301CrossRefGoogle Scholar
  131. Wright A (2005) Regulating the safety of probiotics - the European approach. Curr Pharm Des 11:17.  https://doi.org/10.2174/1381612053382322CrossRefGoogle Scholar
  132. Yan F, Polk DB (2011) Probiotics and immune health. Curr Opin Gastroenterol 27(6):496–501.  https://doi.org/10.1097/MOG.0b013e32834baa4dCrossRefPubMedPubMedCentralGoogle Scholar
  133. Zheng M, Zhang R, Tian X, Zhou X, Pan X, Wong A (2017) Assessing the risk of probiotic dietary supplements in the context of antibiotic resistance. Front Microbiol 8:908.  https://doi.org/10.3389/fmicb.2017.00908CrossRefPubMedPubMedCentralGoogle Scholar
  134. Zhou K (2017) Strategies to promote abundance of Akkermansia muciniphila, an emerging probiotics in the gut, evidence from dietary intervention studies. J Funct Foods 33:194–201.  https://doi.org/10.1016/j.jff.2017.03.045CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Shams Tabrez Khan
    • 1
  • Abdul Malik
    • 1
  1. 1.Department of Agricultural Microbiology, Faculty of Agricultural SciencesAligarh Muslim UniversityAligarhIndia

Personalised recommendations