Advertisement

Optimization of Optical Imaging MIMO-OFDM Precoding Matrix for Underwater VLC

  • Yanlong Li
  • Hongbing Qiu
  • Xiao Chen
  • Jielin FuEmail author
  • Junyi Wang
  • Yitao Zhang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11637)

Abstract

The absorption and scattering are the main problems affecting high-speed data transmission in underwater visible light communication system (UVLC). To address these problems, we propose the imaging multiple input multiple output (MIMO) system for the underwater communication in this paper. Furthermore, the proposed system uses imaging lens to separate the light signal resulting in that decreasing disturbance of the proposed system is better than that of non-imaging MIMO. In this paper, aiming at the problem of high bit error rate (BER) caused by channel correlation in underwater imaging optical MIMO communication system, a precoding algorithm based on received signal Euclidean distance of imaging multiple input multiple output-orthogonal frequency division multiplexing (MIMO-OFDM) is proposed. In order to maximize the minimum Euclidean distance of the received signal set, the precoding matrix is solved under the constraints of the non-negative optical signal and the total power. The system uses the precoding matrix to precode the signals and the receiver detects signals through the maximum likelihood algorithm with the channel matrix and the optimal precoding matrix. The simulation results show that the imaging MIMO system achieves 12 dB gain at the same bit error rate (BER) compared to non-imaging MIMO. Furthermore, the proposed algorithm based on received signal Euclidean distance achieves about 5 dB gain under the same channel compared to the SVD-based precoding algorithm in imaging MIMO system, it greatly improve the BER performance of the imaging optical MIMO-OFDM system in UVLC.

Keywords

Underwater LED communication Imaging MIMO Spatial correlation Euclidean distance Precoding matrix 

Notes

Acknowledgments

This work is supported by the National Natural Science Foundation of China under grant (61761014), Guangxi Natural Science Foundation (2018GXNSFBA281131), Ministry of Education Key Laboratory of Cognitive Radio and Information Processing (CRKL170106), Guangxi key research and development plan(Guike AB18126030), Innovation Project of Guangxi Graduate Education (YCBZ 2017050), Guangxi University Young and Middle-aged Teachers Basic Ability Improvement Plan (2018KY0208), Guangxi Cooperative Innovation Center of cloud computing and Big Data (No1716) and Guangxi Colleges and Universities Key Laboratory of cloud computing and complex systems.

References

  1. 1.
    Han, S., Noh, Y., Liang, R., Chen, R., Cheng, Y.-J., Gerla, M.: Evaluation of underwater optical-acoustic hybrid network. China Commun. 11(5), 49–59 (2014)CrossRefGoogle Scholar
  2. 2.
    Zeng, Z., Fu, S., Zhang, H., Dong, Y., Cheng, J.: A survey of underwater optical wireless communications. IEEE Commun. Surv. Tutor. 19(1), 204–238 (2017)CrossRefGoogle Scholar
  3. 3.
    Arnon, S.: Underwater optical wireless communication network. Opt. Eng. 49(1), 015001 (2010)CrossRefGoogle Scholar
  4. 4.
    Priyanjali, K.S., Nageswaramma, O., Dikshit, A.K., Mrudula, S.: Threshold based soft partial parallel interference cancellation for MIMO-OFDM system. In: IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT), pp. 861–865. IEEE (2016)Google Scholar
  5. 5.
    Jamali, M.V., Salehi, J.A.: On the BER of multiple-input multiple-output underwater wireless optical communication systems. In: 2015 4th International Workshop on Optical Wireless Communications (IWOW), pp. 26–30. IEEE (2015)Google Scholar
  6. 6.
    Tsonev, D., Sinanovic, S., Haas, H.: Practical MIMO capacity for indoor optical wireless communication with white LEDs. In: 2013 IEEE 77th Vehicular Technology Conference (VTC Spring), pp. 1–5. IEEE (2013)Google Scholar
  7. 7.
    Azhar, A.H., Tran, T., OBrien, D.: A gigabit/s indoor wireless transmission using MIMO-OFDM visible-light communications. IEEE Photonics Technol. Lett. 25(2), 171–174 (2013)CrossRefGoogle Scholar
  8. 8.
    Zeng, L., et al.: High data rate multiple input multiple output (MIMO) optical wireless communications using white led lighting. IEEE J. Sel. Areas Commun. 27(9), 1654–1662 (2009)CrossRefGoogle Scholar
  9. 9.
    Wang, T.Q., Sekercioglu, Y.A., Armstrong, J.: Analysis of an optical wireless receiver using a hemispherical lens with application in MIMO visible light communications. J. Lightwave Technol. 31(11), 1744–1754 (2013)CrossRefGoogle Scholar
  10. 10.
    Chen, T., Liu, L., Tu, B., Zheng, Z., Hu, W.: High-spatial-diversity imaging receiver using fisheye lens for indoor MIMO VLCs. IEEE Photonics Technol. Lett. 26(22), 2260–2263 (2014)CrossRefGoogle Scholar
  11. 11.
    Nuwanpriya, A., Ho, S.-W., Chen, C.S.: Indoor MIMO visible light communications: novel angle diversity receivers for mobile users. IEEE J. Sel. Areas Commun. 33(9), 1780–1792 (2015)CrossRefGoogle Scholar
  12. 12.
    Nuwanpriya, A., Ho, S.-W., Chen, C.S.: Angle diversity receiver for indoor MIMO visible light communications. In: 2014 IEEE Globecom Workshops (GC Wkshps), pp. 444–449. IEEE (2014)Google Scholar
  13. 13.
    He, C., Wang, T.Q., Armstrong, J.: MIMO optical wireless receiver using photodetectors with different fields of view. In: 2015 IEEE 81st Vehicular Technology Conference (VTC Spring), pp. 1–5. IEEE (2015)Google Scholar
  14. 14.
    Liu, Q.-F., Xiao, S.-F., Huang, K.-Z., Zhong, Z.: A svd-based optical MIMO precoding scheme in indoor visible light communication. Int. J. Future Comput. Commun. 3(6), 421 (2014)CrossRefGoogle Scholar
  15. 15.
    Serafimovski, N., et al.: Practical implementation of spatial modulation. IEEE Trans. Veh. Technol. 62(9), 4511–4523 (2013)CrossRefGoogle Scholar
  16. 16.
    Zhu, H.-Y., Zhu, Y.-J., Zhang, J.-K., Zhang, Y.-Y.: A double-layer VLC system with low-complexity ML detection and binary constellation designs. IEEE Commun. Lett. 19(4), 561–564 (2015)CrossRefGoogle Scholar
  17. 17.
    Wang, W.-Y., Zhu, Y.-J., Zhang, Y.-Y., Zhang, J.-K.: An optimal power allocation for multi-LED phase-shifted-based MISO VLC systems. IEEE Photonics Technol. Lett. 27(22), 2391–2394 (2015)CrossRefGoogle Scholar
  18. 18.
    Srinivas, V.A., Naresh, Y., Chockalingam, A.: Optimal precoder for MIMO schemes in indoor wireless VLC systems. In: 2018 IEEE 87th Vehicular Technology Conference (VTC Spring), pp. 1–5. IEEE (2018)Google Scholar
  19. 19.
    Kadampot, I.A., Park, K.-H., Alouini, M.-S.: Precoded generalized space shift keying for indoor visible light communications. In: 2014 3rd International Workshop in Optical Wireless Communications (IWOW), pp. 85–89. IEEE (2014)Google Scholar
  20. 20.
    Tran, T.-A., O’Brien, D.C.: Performance metrics for multi-input multi-output (MIMO) visible light communications. In: 2012 International Workshop on Optical Wireless Communications (IWOW), pp. 1–3. IEEE (2012)Google Scholar
  21. 21.
    Mobley, C.D.: Light and Water: Radiative Transfer in Natural Waters. Academic Press, California (1994)Google Scholar
  22. 22.
    Fath, T., Haas, H.: Performance comparison of MIMO techniques for optical wireless communications in indoor environments. IEEE Trans. Commun. 61(2), 733–742 (2013)CrossRefGoogle Scholar
  23. 23.
    Wang, P., Li, C., Xu, Z.: A cost-efficient real-time 25 Mb/s system for LED-UOWC: design, channel coding, FPGA implementation, and characterization. J. Lightwave Technol. 36(13), 2627–2637 (2018)CrossRefGoogle Scholar
  24. 24.
    Haltrin, V.I.: Chlorophyll-based model of seawater optical properties. Appl. Opt. 38(33), 6826–6832 (1999)CrossRefGoogle Scholar
  25. 25.
    Smith, R.C., Baker, K.S.: Optical properties of the clearest natural waters (200–800 nm). Appl. Opt. 20(2), 177–184 (1981)CrossRefGoogle Scholar
  26. 26.
    Kopelevich, O.: Small-parameter model of optical properties of sea water. Ocean Opt. 1, 208–234 (1983)Google Scholar
  27. 27.
    Kerker, M.: Physical optics of ocean water. J. Colloid Interface Sci. 126, 386 (1988)CrossRefGoogle Scholar
  28. 28.
    Hamza, T., Khalighi, M.-A., Bourennane, S., Léon, P., Opderbecke, J.: Investigation of solar noise impact on the performance of underwater wireless optical communication links. Opt. Exp. 24(22), 25832–25845 (2016)CrossRefGoogle Scholar
  29. 29.
    Zeng, Y., Wang, J., Ling, X., Liang, X., Zhao, C.: Joint precoder and DC bias design for MIMO VLC systems. In: 2017 IEEE 17th International Conference on Communication Technology (ICCT), pp. 1180–1185. IEEE (2017)Google Scholar
  30. 30.
    Van Hufel, S., Vandewalle, J.: Iterative speed improvement for solving slowly varying total least squares problems. Mech. Syst. Signal Process. 2(4), 327–348 (1988)CrossRefGoogle Scholar
  31. 31.
    Dissanayake, S.D., Armstrong, J.: Comparison of ACO-OFDM, DCO-OFDM and ADO-OFDM in IM/DD systems. J. Lightwave Technol. 31(7), 1063–1072 (2013)CrossRefGoogle Scholar
  32. 32.
    Armstrong, J., Lowery, A.: Power efficient optical OFDM. Electron. Lett. 42(6), 1 (2006)CrossRefGoogle Scholar
  33. 33.
    Ding, J., Ji, Y.: Evolutionary algorithm-based optimisation of the signal-to-noise ratio for indoor visible-light communication utilising white light-emitting diode. IET Optoelectron. 6(6), 307–317 (2012)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Shuaifang, X., Kaizhi, H., Zhou, Z., et al.: Spatial correlation analysis of MIMO channel in indoor visible light communication. J. Electron. Inf. Technol. 36(9), 2117–2123 (2014)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Yanlong Li
    • 1
    • 2
  • Hongbing Qiu
    • 1
    • 2
  • Xiao Chen
    • 1
  • Jielin Fu
    • 1
    • 2
    Email author
  • Junyi Wang
    • 1
  • Yitao Zhang
    • 1
  1. 1.Department of Information and CommunicationGuilin University of Electronic TechnologyGuilinChina
  2. 2.Ministry of Education Key Laboratory of Cognitive Radio and Information ProcessingGuilin University of Electronic TechnologyGuilinChina

Personalised recommendations