Electroactive Materials

  • Aneeya Kumar Samantara
  • Satyajit Ratha
Part of the SpringerBriefs in Materials book series (BRIEFSMATERIALS)


Both the HER and OER are the core reactions of advanced energy conversion technologies (Fuel cell, metal-air batteries, conversion of CO2 to fuel etc.) which are the key components of the sustainable energy utilization infrastructures. But experimentally these reactions face higher activation energy barrier and require additional potential called overpotential for their completion. In order to reduce the overpotential, numerous electrocatalyst and advanced techniques for electrode fabrication were developed. This chapter covers an up to date literature survey on different types of electroactive materials (precious metals, metal oxides, chalcogenides, phosphides, supported materials etc.) and electrodes employed for electrolysis purpose.


Electrode materials Noble metals Nanostructures Metal oxides Chalcogenides Sulphides Selenides Graphene CNT Composites Supported electrodes Free standing electrodes 


  1. Ambrosi, A., Sofer, Z., & Pumera, M. (2015). Lithium intercalation compound dramatically influences the electrochemical properties of exfoliated MoS2. Small, 11, 605–612.CrossRefGoogle Scholar
  2. Bau, J. A., Li, P., Marenco, A. J., Trudel, S., Olsen, B. C., Luber, E. J., & Buriak, J. M. (2014). Nickel/iron oxide nanocrystals with a nonequilibrium phase: Controlling size, shape, and composition. Chemistry of Materials, 26, 4796–4804.CrossRefGoogle Scholar
  3. Benck, J. D., Hellstern, T. R., Kibsgaard, J., Chakthranont, P., & Jaramillo, T. F. (2014). Catalyzing the Hydrogen Evolution Reaction (HER) with molybdenum sulfide nanomaterials. ACS Catalysis, 4, 3957–3971.CrossRefGoogle Scholar
  4. Bergmann, A., Martinez-Moreno, E., Teschner, D., Chernev, P., Gliech, M., de Araújo, J. F., Reier, T., Dau, H., & Strasser, P. (2015). Reversible amorphization and the catalytically active state of crystalline Co3O4 during oxygen evolution. Nature Communications, 6, 8625.CrossRefGoogle Scholar
  5. Blanchard, P. E. R., Grosvenor, A. P., Cavell, R. G., & Mar, A. (2008). X-ray photoelectron and absorption spectroscopy of metal-rich phosphides M2P and M3P (M = Cr-Ni). Chemistry of Materials, 20, 7081–7088.CrossRefGoogle Scholar
  6. Bonde, J., Moses, P. G., Jaramillo, T. F., Nørskov, J. K., & Chorkendorff, I. (2009). Hydrogen evolution on nano-particulate transition metal sulfides. Faraday Discussions, 140, 219–231.CrossRefGoogle Scholar
  7. Boppana, V. B. R., & Jiao, F. (2011). Nanostructured MnO2: An efficient and robust water oxidation catalyst. Chemical Communications, 47, 8973–8975.CrossRefGoogle Scholar
  8. Burgess, B. K., & Lowe, D. J. (2002). Mechanism of molybdenum nitrogenase. Chemical Reviews, 96, 2983–3012.CrossRefGoogle Scholar
  9. Callejas, J. F., McEnaney, J. M., Read, C. G., Crompton, J. C., Biacchi, A. J., Popczun, E. J., Gordon, T. R., Lewis, N. S., & Schaak, R. E. (2014). Electrocatalytic and photocatalytic hydrogen production from acidic and neutral-pH aqueous solutions using Iron phosphide nanoparticles. ACS Nano, 8, 11101–11107.CrossRefGoogle Scholar
  10. Callejas, J. F., Read, C. G., Popczun, E. J., McEnaney, J. M., & Schaak, R. E. (2015). Nanostructured Co2P electrocatalyst for the hydrogen evolution reaction and direct comparison with morphologically equivalent CoP. Chemistry of Materials, 27, 3769–3774.CrossRefGoogle Scholar
  11. Chen, S., Duan, J., Jaroniec, M., & Qiao, S.-Z. (2014). Nitrogen and oxygen dual-doped carbon hydrogel film as a substrate-free electrode for highly efficient oxygen evolution reaction. Advanced Materials, 26, 2925–2930.CrossRefGoogle Scholar
  12. Chen, S., Duan, J., Jaroniec, M., & Qiao, S. Z. (2013a). Three-dimensional N-doped graphene hydrogel/NiCo double hydroxide electrocatalysts for highly efficient oxygen evolution. Angewandte Chemie International Edition, 52, 13567–13570.CrossRefGoogle Scholar
  13. Chen, S., Duan, J., Ran, J., Jaroniec, M., & Qiao, S. Z. (2013b). N-doped graphene film-confined nickel nanoparticles as a highly efficient three-dimensional oxygen evolution electrocatalyst. Energy & Environmental Science, 6, 3693–3699.CrossRefGoogle Scholar
  14. Chen, S., & Qiao, S. Z. (2013). Hierarchically porous nitrogen-doped graphene-NiCo2O4 hybrid paper as an advanced electrocatalytic water-splitting material. ACS Nano, 7, 10190–10196.CrossRefGoogle Scholar
  15. Chen, X., Yu, K., Shen, Y., Feng, Y., & Zhu, Z. (2017). Synergistic effect of MoS2 nanosheets and VS2 for the hydrogen evolution reaction with enhanced humidity-sensing performance. ACS Applied Materials & Interfaces, 9, 42139–42148.CrossRefGoogle Scholar
  16. Chen, Z., Cummins, D., Reinecke, B. N., Clark, E., Sunkara, M. K., & Jaramillo, T. F. (2011). Core–shell MoO3–MoS2 nanowires for hydrogen evolution: A functional design for electrocatalytic materials. Nano Letters, 11, 4168–4175.CrossRefGoogle Scholar
  17. Chen, Z., Kronawitter, C. X., & Koel, B. E. (2015). Facet-dependent activity and stability of Co3O4 nanocrystals towards the oxygen evolution reaction. Physical Chemistry Chemical Physics, 17, 29387–29393.CrossRefGoogle Scholar
  18. Choi, C. L., Feng, J., Li, Y., Wu, J., Zak, A., Tenne, R., & Dai, H. (2013). WS2 nanoflakes from nanotubes for electrocatalysis. Nano Research, 6, 921–928.CrossRefGoogle Scholar
  19. Chung, D. Y., Han, J. W., Lim, D.-H., Jo, J.-H., Yoo, S. J., Lee, H., & Sung, Y.-E. (2015). Structure dependent active sites of NixSy as electrocatalysts for hydrogen evolution reaction. Nanoscale, 7, 5157–5163.CrossRefGoogle Scholar
  20. Chung, D. Y., Jun, S. W., Yoon, G., Kim, H., Yoo, J. M., Lee, K.-S., Kim, T., Shin, H., Sinha, A. K., Kwon, S. G., Kang, K., Hyeon, T., & Sung, Y.-E. (2017). Large-scale synthesis of carbon-shell-coated FeP nanoparticles for robust hydrogen evolution reaction electrocatalyst. Journal of the American Chemical Society, 139, 6669–6674.CrossRefGoogle Scholar
  21. Chung, D. Y., Park, S.-K., Chung, Y.-H., Yu, S.-H., Lim, D.-H., Jung, N., Ham, H. C., Park, H.-Y., Piao, Y., Yoo, S. J., & Sung, Y.-E. (2014). Edge-exposed MoS2 nano-assembled structures as efficient electrocatalysts for hydrogen evolution reaction. Nanoscale, 6, 2131–2136.CrossRefGoogle Scholar
  22. Das, J. K., Samantara, A. K., Nayak, A. K., Pradhan, D., & Behera, J. N. (2018). VS2: An efficient catalyst for an electrochemical hydrogen evolution reaction in an acidic medium. Dalton Transactions, 47, 13792–13799.CrossRefGoogle Scholar
  23. Di Giovanni, C., Wang, W.-A., Nowak, S., Grenèche, J.-M., Lecoq, H., Mouton, L., Giraud, M., & Tard, C. (2014). Bioinspired iron sulfide nanoparticles for cheap and long-lived electrocatalytic molecular hydrogen evolution in neutral water. ACS Catalysis, 4, 681–687.CrossRefGoogle Scholar
  24. Diaz-Morales, O., Raaijman, S., Kortlever, R., Kooyman, P. J., Wezendonk, T., Gascon, J., Fu, W. T., & Koper, M. T. M. (2016). Iridium-based double perovskites for efficient water oxidation in acid media. Nature Communications, 7, 12363.CrossRefGoogle Scholar
  25. Duan, J., Chen, S., Vasileff, A., & Qiao, S. Z. (2016). Anion and cation modulation in metal compounds for bifunctional overall water splitting. ACS Nano, 10, 8738–8745.CrossRefGoogle Scholar
  26. Dutta, A., Mutyala, S., Samantara, A. K., Bera, S., Jena, B. K., & Pradhan, N. (2018). Synergistic effect of inactive iron oxide core on active nickel phosphide shell for significant enhancement in oxygen evolution reaction activity. ACS Energy Letters, 3, 141–148.CrossRefGoogle Scholar
  27. Dutta, A., Samantara, A. K., Dutta, S. K., Jena, B. K., & Pradhan, N. (2016). Surface-oxidized dicobalt phosphide nanoneedles as a nonprecious, durable, and efficient OER catalyst. ACS Energy Letters, 1, 169–174.CrossRefGoogle Scholar
  28. Eady, R. R. (1996). Structure-function relationships of alternative nitrogenases. Chemical Reviews, 96, 3013–3030.CrossRefGoogle Scholar
  29. Eckenhoff, W. T., McNamara, W. R., Du, P., & Eisenberg, R. (2013). Cobalt complexes as artificial hydrogenases for the reductive side of water splitting. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1827, 958–973.CrossRefGoogle Scholar
  30. Ensafi, A. A., Jafari-Asl, M., Nabiyan, A., & Rezaei, B. (2016). Ni3S2/ball-milled silicon flour as a bi-functional electrocatalyst for hydrogen and oxygen evolution reactions. Energy, 116, 392–401.CrossRefGoogle Scholar
  31. Esposito, D. V., & Chen, J. G. (2011). Monolayer platinum supported on tungsten carbides as low-cost electrocatalysts: Opportunities and limitations. Energy & Environmental Science, 4, 3900–3912.CrossRefGoogle Scholar
  32. Esswein, A. J., McMurdo, M. J., Ross, P. N., Bell, A. T., & Tilley, T. D. (2009). Size-dependent activity of Co3O4 nanoparticle anodes for alkaline water electrolysis. Journal of Physical Chemistry C, 113, 15068–15072.CrossRefGoogle Scholar
  33. Faber, M. S., Dziedzic, R., Lukowski, M. A., Kaiser, N. S., Ding, Q., & Jin, S. (2014a). High-performance electrocatalysis using metallic cobalt pyrite (CoS2) micro- and nanostructures. Journal of the American Chemical Society, 136, 10053–10061.CrossRefGoogle Scholar
  34. Faber, M. S., Lukowski, M. A., Ding, Q., Kaiser, N. S., & Jin, S. (2014b). Earth-abundant metal pyrites (FeS2, CoS2, NiS2, and their alloys) for highly efficient hydrogen evolution and polysulfide reduction Electrocatalysis. Journal of Physical Chemistry C, 118, 21347–21356.CrossRefGoogle Scholar
  35. Feng, L.-L., Yu, G., Wu, Y., Li, G.-D., Li, H., Sun, Y., Asefa, T., Chen, W., & Zou, X. (2015). High-index faceted Ni3S2 nanosheet arrays as highly active and ultrastable electrocatalysts for water splitting. Journal of the American Chemical Society, 137, 14023–14026.CrossRefGoogle Scholar
  36. Feng, Y., He, T., & Alonso-Vante, N. (2008). In situ free-surfactant synthesis and ORR- electrochemistry of carbon-supported Co3S4 and CoSe2 nanoparticles. Chemistry of Materials, 20, 26–28.CrossRefGoogle Scholar
  37. Gao, M., Sheng, W., Zhuang, Z., Fang, Q., Gu, S., Jiang, J., & Yan, Y. (2014). Efficient water oxidation using nanostructured α-nickel-hydroxide as an electrocatalyst. Journal of the American Chemical Society, 136, 7077–7084.CrossRefGoogle Scholar
  38. Gilje, S., Kaner, R. B., Wallace, G. G., Li, D. A. N., & Mu, M. B. (2008). Processable aqueous dispersions of graphene nanosheets. Nature Nanotechnology, 3, 101–105.CrossRefGoogle Scholar
  39. Gong, M., Li, Y., Wang, H., Liang, Y., Wu, J. Z., Zhou, J., Wang, J., Regier, T., Wei, F., & Dai, H. (2013). An advanced Ni–Fe layered double hydroxide electrocatalyst for water oxidation. Journal of the American Chemical Society, 135, 8452–8455.CrossRefGoogle Scholar
  40. Gong, M., Zhou, W., Tsai, M.-C., Zhou, J., Guan, M., Lin, M.-C., Zhang, B., Hu, Y., Wang, D.-Y., Yang, J., Pennycook, S. J., Hwang, B.-J., & Dai, H. (2014). Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis. Nature Communications, 5, 4695.CrossRefGoogle Scholar
  41. Gopalakrishnan, D., Damien, D., & Shaijumon, M. M. (2014). MoS2 quantum dot-interspersed exfoliated MoS2 Nanosheets. ACS Nano, 8, 5297–5303.CrossRefGoogle Scholar
  42. Greeley, J., Jaramillo, T. F., Bonde, J., Chorkendorff, I., & Nørskov, J. K. (2006). Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nature Materials, 5, 909–913.CrossRefGoogle Scholar
  43. Guo, C. X., Chen, S., & Lu, X. (2014). Ethylenediamine-mediated synthesis of Mn3O4 nano-octahedrons and their performance as electrocatalysts for the oxygen evolution reaction. Nanoscale, 6, 10896–10901.CrossRefGoogle Scholar
  44. Guo, Y., Tong, Y., Chen, P., Xu, K., Zhao, J., Lin, Y., Chu, W., Peng, Z., Wu, C., & Xie, Y. (2015). Engineering the electronic state of a Perovskite electrocatalyst for synergistically enhanced oxygen evolution reaction. Advanced Materials, 27, 5989–5994.CrossRefGoogle Scholar
  45. Hallenbeck, P. C., & Benemann, J. R. (2002). Biological hydrogen production; fundamentals and limiting processes. International Journal of Hydrogen Energy, 27, 1185–1193.CrossRefGoogle Scholar
  46. Hinnemann, B., Moses, P. G., Bonde, J., Jørgensen, K. P., Nielsen, J. H., Horch, S., Chorkendorff, I., & Nørskov, J. K. (2005). Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. Journal of the American Chemical Society, 127, 5308–5309.CrossRefGoogle Scholar
  47. Hirai, S., Yagi, S., Seno, A., Fujioka, M., Ohno, T., & Matsuda, T. (2016). Enhancement of the oxygen evolution reaction in Mn3+−based electrocatalysts: Correlation between Jahn–Teller distortion and catalytic activity. RSC Advances, 6, 2019–2023.CrossRefGoogle Scholar
  48. Hüppauff, M. (1993). Valency and structure of iridium in anodic iridium oxide films. Journal of the Electrochemical Society, 140, 598.CrossRefGoogle Scholar
  49. Hutchings, R., Müller, K., Kötz, R., & Stucki, S. (1984). A structural investigation of stabilized oxygen evolution catalysts. Journal of Materials Science, 19, 3987–3994.CrossRefGoogle Scholar
  50. Huynh, M., Shi, C., Billinge, S. J. L., & Nocera, D. G. (2015). Nature of activated manganese oxide for oxygen evolution. Journal of the American Chemical Society, 137, 14887–14904.CrossRefGoogle Scholar
  51. Jaramillo, T. F., Jørgensen, K. P., Bonde, J., Nielsen, J. H., Horch, S., & Chorkendorff, I. (2007). Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science (80-. ), 317, 100–102.CrossRefGoogle Scholar
  52. Jiang, J., Wang, C., Zhang, J., Wang, W., Zhou, X., Pan, B., Tang, K., Zuo, J., & Yang, Q. (2015). Synthesis of FeP2/C nanohybrids and their performance for hydrogen evolution reaction. Journal of Materials Chemistry A, 3, 499–503.CrossRefGoogle Scholar
  53. Jiang, N., Bogoev, L., Popova, M., Gul, S., Yano, J., & Sun, Y. (2014). Electrodeposited nickel-sulfide films as competent hydrogen evolution catalysts in neutral water. Journal of Materials Chemistry A, 2, 19407–19414.CrossRefGoogle Scholar
  54. Jiang, P., Liu, Q., Ge, C., Cui, W., Pu, Z., Asiri, A. M., & Sun, X. (2014a). CoP nanostructures with different morphologies: Synthesis, characterization and a study of their electrocatalytic performance toward the hydrogen evolution reaction. Journal of Materials Chemistry A, 2, 14634–14640.CrossRefGoogle Scholar
  55. Jiang, P., Liu, Q., Liang, Y., Tian, J., Asiri, A. M., & Sun, X. (2014b). A cost-effective 3D hydrogen evolution cathode with high catalytic activity: FeP nanowire array as the active phase. Angewandte Chemie, 126, 13069–13073.CrossRefGoogle Scholar
  56. Jiang, P., Liu, Q., & Sun, X. (2014c). NiP2 nanosheet arrays supported on carbon cloth: An efficient 3D hydrogen evolution cathode in both acidic and alkaline solutions. Nanoscale, 6, 13440–13445.CrossRefGoogle Scholar
  57. Jing, S., Lu, J., Yu, G., Yin, S., Luo, L., Zhang, Z., Ma, Y., Chen, W., & Shen, P. K. (2018). Carbon-encapsulated WOx hybrids as efficient catalysts for hydrogen evolution. Advanced Materials, 30, 1705979.CrossRefGoogle Scholar
  58. Kelly, T. G., & Chen, J. G. (2012). Metal overlayer on metal carbide substrate: Unique bimetallic properties for catalysis and electrocatalysis. Chemical Society Reviews, 41, 8021–8034.CrossRefGoogle Scholar
  59. Kibler, L. A., El-Aziz, A. M., Hoyer, R., & Kolb, D. M. (2005). Tuning reaction rates by lateral strain in a palladium monolayer. Angewandte Chemie International Edition, 44, 2080–2084.CrossRefGoogle Scholar
  60. Kibsgaard, J., Chen, Z., Reinecke, B. N., & Jaramillo, T. F. (2012). Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nature Materials, 11, 963.CrossRefGoogle Scholar
  61. Kibsgaard, J., Tsai, C., Chan, K., Benck, J. D., Nørskov, J. K., Abild-Pedersen, F., & Jaramillo, T. F. (2015). Designing an improved transition metal phosphide catalyst for hydrogen evolution using experimental and theoretical trends. Energy & Environmental Science, 8, 3022–3029.CrossRefGoogle Scholar
  62. Kim, J., Kim, J. S., Baik, H., Kang, K., & Lee, K. (2016). Porous β-MnO2 nanoplates derived from MnCO3 nanoplates as highly efficient electrocatalysts toward oxygen evolution reaction. RSC Advances, 6, 26535–26539.CrossRefGoogle Scholar
  63. Kim, N. -I., Sa, Y. J., Cho, S. -H., So, I., Kwon, K., Joo, S. H., & Park, J. -Y. (2016). Enhancing activity and stability of cobalt oxide electrocatalysts for the oxygen evolution reaction via transition metal doping. Journal of the Electrochemical Society, 163, F3020–F3028.Google Scholar
  64. Kitchin, J. R., Nørskov, J. K., Barteau, M. A., & Chen, J. G. (2004). Role of strain and ligand effects in the modification of the electronic and chemical properties of bimetallic surfaces. Physical Review Letters, 93, 156801.CrossRefGoogle Scholar
  65. Kong, D., Cha, J. J., Wang, H., Lee, H. R., & Cui, Y. (2013a). First-row transition metal dichalcogenide catalysts for hydrogen evolution reaction. Energy & Environmental Science, 6, 3553–3558.CrossRefGoogle Scholar
  66. Kong, D., Wang, H., Cha, J. J., Pasta, M., Koski, K. J., Yao, J., & Cui, Y. (2013b). Synthesis of MoS2 and MoSe2 films with vertically aligned layers. Nano Letters, 13, 1341–1347.CrossRefGoogle Scholar
  67. Kong, D., Wang, H., Lu, Z., & Cui, Y. (2014). CoSe2 nanoparticles grown on carbon fiber paper: An efficient and stable electrocatalyst for hydrogen evolution reaction. Journal of the American Chemical Society, 136, 4897–4900.CrossRefGoogle Scholar
  68. Kötz, R., & Stucki, S. (1985). Oxygen evolution and corrosion on ruthenium-iridium alloys. Journal of the Electrochemical Society, 132, 103–107.CrossRefGoogle Scholar
  69. Kreysa, G., Ota, K.-I., & Savinell, R. F. (2014). Encyclopedia of applied electrochemistry. New York: Springer.CrossRefGoogle Scholar
  70. Kuo, C.-H., Li, W., Pahalagedara, L., El-Sawy, A. M., Kriz, D., Genz, N., Guild, C., Ressler, T., Suib, S. L., & He, J. (2015). Understanding the role of gold nanoparticles in enhancing the catalytic activity of manganese oxides in water oxidation reactions. Angewandte Chemie International Edition, 54, 2345–2350.CrossRefGoogle Scholar
  71. Laursen, A. B., Patraju, K. R., Whitaker, M. J., Retuerto, M., Sarkar, T., Yao, N., Ramanujachary, K. V., Greenblatt, M., & Dismukes, G. C. (2015). Nanocrystalline Ni5P4: A hydrogen evolution electrocatalyst of exceptional efficiency in both alkaline and acidic media. Energy & Environmental Science, 8, 1027–1034.CrossRefGoogle Scholar
  72. Laursen, A. B., Wexler, R. B., Whitaker, M. J., Izett, E. J., Calvinho, K. U. D., Hwang, S., Rucker, R., Wang, H., Li, J., Garfunkel, E., Greenblatt, M., Rappe, A. M., & Dismukes, G. C. (2018). Climbing the volcano of electrocatalytic activity while avoiding catalyst corrosion: Ni3P, a hydrogen evolution electrocatalyst stable in both acid and alkali. ACS Catalysis, 8, 4408–4419.CrossRefGoogle Scholar
  73. Lee, D. U., Choi, J.-Y., Feng, K., Park, H. W., & Chen, Z. (2014). Advanced extremely durable 3D bifunctional air electrodes for rechargeable zinc-air batteries. Advanced Energy Materials, 4, 1301389.CrossRefGoogle Scholar
  74. Lee, Y., Suntivich, J., May, K. J., Perry, E. E., & Shao-Horn, Y. (2012). Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions. Journal of Physical Chemistry Letters, 3, 399–404.CrossRefGoogle Scholar
  75. Leng, X., Zeng, Q., Wu, K.-H., Gentle, I. R., & Wang, D.-W. (2015). Reduction-induced surface amorphization enhances the oxygen evolution activity in Co3O4. RSC Advances, 5, 27823–27828.CrossRefGoogle Scholar
  76. Li, D., Baydoun, H., Verani, C. N., & Brock, S. L. (2016). Efficient water oxidation using CoMnP nanoparticles. Journal of the American Chemical Society, 138, 4006–4009.CrossRefGoogle Scholar
  77. Li, M., Xiong, Y., Liu, X., Bo, X., Zhang, Y., Han, C., & Guo, L. (2015). Facile synthesis of electrospun MFe2O4 (M = Co, Ni, Cu, Mn) spinel nanofibers with excellent electrocatalytic properties for oxygen evolution and hydrogen peroxide reduction. Nanoscale, 7, 8920–8930.Google Scholar
  78. Li, S., Wang, Y., Peng, S., Zhang, L., Al-Enizi, A. M., Zhang, H., Sun, X., & Zheng, G. (2016). Co–Ni-based nanotubes/Nanosheets as efficient water splitting Electrocatalysts. Advanced Energy Materials, 6, 1501661.Google Scholar
  79. Li, Y., Zhang, H., Jiang, M., Kuang, Y., Sun, X., & Duan, X. (2016). Ternary NiCoP nanosheet arrays: An excellent bifunctional catalyst for alkaline overall water splitting. Nano Research, 9, 2251–2259.Google Scholar
  80. Li, Y. H., Liu, P. F., Pan, L. F., Wang, H. F., Yang, Z. Z., Zheng, L. R., Hu, P., Zhao, H. J., Gu, L., & Yang, H. G. (2015). Local atomic structure modulations activate metal oxide as electrocatalyst for hydrogen evolution in acidic water. Nature Communications, 6, 8064.CrossRefGoogle Scholar
  81. Liang, H., Shi, H., Zhang, D., Ming, F., Wang, R., Zhuo, J., & Wang, Z. (2016). Solution growth of vertical VS2 nanoplate arrays for electrocatalytic hydrogen evolution. Chemistry of Materials, 28, 5587–5591.CrossRefGoogle Scholar
  82. Liang, Y., Li, Y., Wang, H., Zhou, J., Wang, J., Regier, T., & Dai, H. (2011). Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nature Materials, 10, 780.CrossRefGoogle Scholar
  83. Liao, J.-Y., Higgins, D., Lui, G., Chabot, V., Xiao, X., & Chen, Z. (2013). Multifunctional TiO2–C/MnO2 Core–double-shell nanowire arrays as high-performance 3D electrodes for lithium ion batteries. Nano Letters, 13, 5467–5473.CrossRefGoogle Scholar
  84. Lin, C.-H., Chen, C.-L., & Wang, J.-H. (2011). Mechanistic studies of water–gas-shift reaction on transition metals. Journal of Physical Chemistry C, 115, 18582–18588.CrossRefGoogle Scholar
  85. Liu, P., & Rodriguez, J. A. (2005). Catalysts for hydrogen evolution from the [NiFe] hydrogenase to the Ni2P(001) surface: The importance of ensemble effect. Journal of the American Chemical Society, 127, 14871–14878.CrossRefGoogle Scholar
  86. Liu, Q., Tian, J., Cui, W., Jiang, P., Cheng, N., Asiri, A. M., & Sun, X. (2014). Carbon nanotubes decorated with CoP nanocrystals: A highly active non-noble-metal nanohybrid electrocatalyst for hydrogen evolution. Angewandte Chemie International Edition, 53, 6710–6714.CrossRefGoogle Scholar
  87. Liu, T., Liang, Y., Liu, Q., Sun, X., He, Y., & Asiri, A. M. (2015). Electrodeposition of cobalt-sulfide nanosheets film as an efficient electrocatalyst for oxygen evolution reaction. Electrochemistry Communications, 60, 92–96.CrossRefGoogle Scholar
  88. Liu, W., Hu, E., Jiang, H., Xiang, Y., Weng, Z., Li, M., Fan, Q., Yu, X., Altman, E. I., & Wang, H. (2016). A highly active and stable hydrogen evolution catalyst based on pyrite-structured cobalt phosphosulfide. Nature Communications, 7, 10771.CrossRefGoogle Scholar
  89. Liu, X., Cui, S., Qian, M., Sun, Z., & Du, P. (2016). In situ generated highly active copper oxide catalysts for the oxygen evolution reaction at low overpotential in alkaline solutions. Chemical Communications, 52, 5546–5549.Google Scholar
  90. Liu, Y., Cheng, H., Lyu, M., Fan, S., Liu, Q., Zhang, W., Zhi, Y., Wang, C., Xiao, C., Wei, S., Ye, B., & Xie, Y. (2014). Low overpotential in vacancy-rich ultrathin CoSe2 nanosheets for water oxidation. Journal of the American Chemical Society, 136, 15670–15675.Google Scholar
  91. Lu, B., Cao, D., Wang, P., Wang, G., & Gao, Y. (2011). Oxygen evolution reaction on Ni-substituted Co3O4 nanowire array electrodes. International Journal of Hydrogen Energy, 36, 72–78.CrossRefGoogle Scholar
  92. Lu, Z., Zhang, H., Zhu, W., Yu, X., Kuang, Y., Chang, Z., Lei, X., & Sun, X. (2013). In situ fabrication of porous MoS2 thin-films as high-performance catalysts for electrochemical hydrogen evolution. Chemical Communications, 49, 7516–7518.CrossRefGoogle Scholar
  93. Lu, Z., Zhu, W., Yu, X., Zhang, H., Li, Y., Sun, X., Wang, X., Wang, H., Wang, J., Luo, J., Lei, X., & Jiang, L. (2014b). Ultrahigh hydrogen evolution performance of under-water “Superaerophobic” MoS2 nanostructured electrodes. Advanced Materials, 26, 2683–2687.CrossRefGoogle Scholar
  94. Lukowski, M. A., Daniel, A. S., Meng, F., Forticaux, A., Li, L., & Jin, S. (2013). Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. Journal of the American Chemical Society, 135, 10274–10277.CrossRefGoogle Scholar
  95. Lv, X.-J., She, G.-W., Zhou, S.-X., & Li, Y.-M. (2013). Highly efficient electrocatalytic hydrogen production by nickel promoted molybdenum sulfide microspheres catalysts. RSC Advances, 3, 21231–21236.CrossRefGoogle Scholar
  96. Ma, T. Y., Dai, S., & Qiao, S. Z. (2016). Self-supported electrocatalysts for advanced energy conversion processes. Materials Today, 19, 265–273.CrossRefGoogle Scholar
  97. Ma, T. Y., Ran, J., Dai, S., Jaroniec, M., & Qiao, S. Z. (2015). Phosphorus-doped graphitic carbon nitrides grown in situ on carbon-fiber paper: Flexible and reversible oxygen electrodes. Angewandte Chemie International Edition, 54, 4646–4650.CrossRefGoogle Scholar
  98. Mamaca, N., Mayousse, E., Arrii-Clacens, S., Napporn, T. W., Servat, K., Guillet, N., & Kokoh, K. B. (2012). Electrochemical activity of ruthenium and iridium based catalysts for oxygen evolution reaction. Applied Catalysis B: Environmental, 111–112, 376–380.CrossRefGoogle Scholar
  99. Man, I. C., Su, H.-Y., Calle-Vallejo, F., Hansen, H. A., Martínez, J. I., Inoglu, N. G., Kitchin, J., Jaramillo, T. F., Nørskov, J. K., & Rossmeisl, J. (2011). Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem, 3, 1159–1165.CrossRefGoogle Scholar
  100. McEnaney, J. M., Chance Crompton, J., Callejas, J. F., Popczun, E. J., Read, C. G., Lewis, N. S., & Schaak, R. E. (2014). Electrocatalytic hydrogen evolution using amorphous tungsten phosphide nanoparticles. Chemical Communications, 50, 11026–11028.CrossRefGoogle Scholar
  101. McPherson, I. J., & Vincent, K. A. (2014). Electrocatalysis by hydrogenases: Lessons for building bio-inspired devices. Journal of the Brazilian Chemical Society, 25, 427–441.Google Scholar
  102. Mendoza-Garcia, A., Zhu, H., Yu, Y., Li, Q., Zhou, L., Su, D., Kramer, M. J., & Sun, S. (2015). Controlled anisotropic growth of Co-Fe-P from Co-Fe-O nanoparticles. Angewandte Chemie International Edition, 54, 9642–9645.CrossRefGoogle Scholar
  103. Merki, D., Vrubel, H., Rovelli, L., Fierro, S., & Hu, X. (2012). Fe, co, and Ni ions promote the catalytic activity of amorphous molybdenum sulfide films for hydrogen evolution. Chemical Science, 3, 2515–2525.CrossRefGoogle Scholar
  104. Mom, R. V., Cheng, J., Koper, M. T. M., & Sprik, M. (2014). Modeling the oxygen evolution reaction on metal oxides: The Infuence of unrestricted DFT calculations. Journal of Physical Chemistry C, 118, 4095–4102.CrossRefGoogle Scholar
  105. Muthuswamy, E., Kharel, P. R., Lawes, G., & Brock, S. L. (2009). Control of phase in phosphide nanoparticles produced by metal nanoparticle transformation: Fe2P and FeP. ACS Nano, 3, 2383–2393.CrossRefGoogle Scholar
  106. Nahor, G. S., Hapiot, P., Neta, P., & Harriman, A. (1991). Changes in the redox state of iridium oxide clusters and their relation to catalytic water oxidation: Radiolytic and electrochemical studies. The Journal of Physical Chemistry, 95, 616–621.CrossRefGoogle Scholar
  107. Neyerlin, K. C., Bugosh, G., Forgie, R., Liu, Z., & Strasser, P. (2009). Combinatorial study of high-surface-area binary and ternary electrocatalysts for the oxygen evolution reaction. Journal of the Electrochemical Society, 156, B363–B369.CrossRefGoogle Scholar
  108. Ouyang, C., Wang, X., Wang, C., Zhang, X., Wu, J., Ma, Z., Dou, S., & Wang, S. (2015). Hierarchically porous Ni3S2 nanorod array foam as highly efficient electrocatalyst for hydrogen evolution reaction and oxygen evolution reaction. Electrochimica Acta, 174, 297–301.CrossRefGoogle Scholar
  109. Over, H. (2012). Surface chemistry of ruthenium dioxide in heterogeneous catalysis and electrocatalysis: From fundamental to applied research. Chemical Reviews, 112, 3356–3426.CrossRefGoogle Scholar
  110. Pan, Y., Liu, Y., Zhao, J., Yang, K., Liang, J., Liu, D., Hu, W., Liu, D., Liu, Y., & Liu, C. (2015). Monodispersed nickel phosphide nanocrystals with different phases: Synthesis, characterization and electrocatalytic properties for hydrogen evolution. Journal of Materials Chemistry A, 3, 1656–1665.CrossRefGoogle Scholar
  111. Pei, J., Mao, J., Liang, X., Chen, C., Peng, Q., Wang, D., & Li, Y. (2016). Ir–Cu nanoframes: One-pot synthesis and efficient electrocatalysts for oxygen evolution reaction. Chemical Communications, 52, 3793–3796.CrossRefGoogle Scholar
  112. Pi, M., Wu, T., Zhang, D., Chen, S., & Wang, S. (2016). Self-supported three-dimensional mesoporous semimetallic WP2 nanowire arrays on carbon cloth as a flexible cathode for efficient hydrogen evolution. Nanoscale, 8, 19779–19786.CrossRefGoogle Scholar
  113. Plaisance, C. P., Reuter, K., & van Santen, R. A. (2016). Quantum chemistry of the oxygen evolution reaction on cobalt(ii,iii) oxide – implications for designing the optimal catalyst. Faraday Discussions, 188, 199–226.CrossRefGoogle Scholar
  114. Popczun, E. J., McKone, J. R., Read, C. G., Biacchi, A. J., Wiltrout, A. M., Lewis, N. S., & Schaak, R. E. (2013). Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. Journal of the American Chemical Society, 135, 9267–9270.CrossRefGoogle Scholar
  115. Popczun, E. J., Read, C. G., Roske, C. W., Lewis, N. S., & Schaak, R. E. (2014). Highly active electrocatalysis of the hydrogen evolution reaction by cobalt phosphide nanoparticles. Angewandte Chemie International Edition, 53, 5427–5430.CrossRefGoogle Scholar
  116. Pu, Z., Liu, Q., Asiri, A. M., Obaid, A. Y., & Sun, X. (2014a). One-step electrodeposition fabrication of graphene film-confined WS2 nanoparticles with enhanced electrochemical catalytic activity for hydrogen evolution. Electrochimica Acta, 134, 8–12.CrossRefGoogle Scholar
  117. Pu, Z., Liu, Q., Asiri, A. M., & Sun, X. (2014b). Tungsten phosphide nanorod arrays directly grown on carbon cloth: A highly efficient and stable hydrogen evolution cathode at all pH values. ACS Applied Materials & Interfaces, 6, 21874–21879.CrossRefGoogle Scholar
  118. Pu, Z., Ya, X., Amiinu, I. S., Tu, Z., Liu, X., Li, W., & Mu, S. (2016). Ultrasmall tungsten phosphide nanoparticles embedded in nitrogen-doped carbon as a highly active and stable hydrogen-evolution electrocatalyst. Journal of Materials Chemistry A, 4, 15327–15332.CrossRefGoogle Scholar
  119. Qiu, Y., Xin, L., & Li, W. (2014). Electrocatalytic oxygen evolution over supported small amorphous Ni–Fe nanoparticles in alkaline electrolyte. Langmuir, 30, 7893–7901.CrossRefGoogle Scholar
  120. Rao, Y., Zhang, L.-M., Shang, X., Dong, B., Liu, Y.-R., Lu, S.-S., Chi, J.-Q., Chai, Y.-M., & Liu, C.-G. (2017). Vanadium sulfides interwoven nanoflowers based on in-situ sulfurization of vanadium oxides octahedron on nickel foam for efficient hydrogen evolution. Applied Surface Science, 423, 1090–1096.CrossRefGoogle Scholar
  121. Ratha, S., Samantara, A. K., Singha, K. K., Gangan, A. S., Chakraborty, B., Jena, B. K., & Rout, C. S. (2017). Urea-assisted room temperature stabilized metastable β-NiMoO4: Experimental and theoretical insights into its unique Bifunctional activity toward oxygen evolution and Supercapacitor. ACS Applied Materials & Interfaces, 9, 9640–9653.CrossRefGoogle Scholar
  122. Ryu, J., Jung, N., Jang, J. H., Kim, H.-J., & Yoo, S. J. (2015). In situ transformation of hydrogen-evolving CoP nanoparticles: Toward efficient oxygen evolution catalysts bearing dispersed morphologies with Co-oxo/hydroxo molecular units. ACS Catalysis, 5, 4066–4074.CrossRefGoogle Scholar
  123. Samantara, A. K., Kamila, S., Ghosh, A., & Jena, B. K. (2018). Highly ordered 1D NiCo2O4 nanorods on graphene: An efficient dual-functional hybrid materials for electrochemical energy conversion and storage applications. Electrochimica Acta, 263, 147–157.CrossRefGoogle Scholar
  124. Sanchez Casalongue, H. G., Ng, M. L., Kaya, S., Friebel, D., Ogasawara, H., & Nilsson, A. (2014). In situ observation of surface species on iridium oxide nanoparticles during the oxygen evolution reaction. Angewandte Chemie International Edition, 53, 7169–7172.Google Scholar
  125. Sardar, K., Petrucco, E., Hiley, C. I., Sharman, J. D. B., Wells, P. P., Russell, A. E., Kashtiban, R. J., Sloan, J., & Walton, R. I. (2014). Water-splitting electrocatalysis in acid conditions using Ruthenate-Iridate Pyrochlores. Angewandte Chemie International Edition, 53, 10960–10964.CrossRefGoogle Scholar
  126. Schipper, D. E., Zhao, Z., Thirumalai, H., Leitner, A. P., Donaldson, S. L., Kumar, A., Qin, F., Wang, Z., Grabow, L. C., Bao, J., & Whitmire, K. H. (2018). Effects of catalyst phase on the hydrogen evolution reaction of water splitting: Preparation of phase-pure films of FeP, Fe2P, and Fe3P and their relative catalytic activities. Chemistry of Materials, 30, 3588–3598.CrossRefGoogle Scholar
  127. Seo, B., Baek, D. S., Sa, Y. J., & Joo, S. H. (2016). Shape effects of nickel phosphide nanocrystals on hydrogen evolution reaction. CrystEngComm, 18, 6083–6089.CrossRefGoogle Scholar
  128. Shen, M., Ruan, C., Chen, Y., Jiang, C., Ai, K., & Lu, L. (2015). Covalent entrapment of cobalt–iron sulfides in N-doped Mesoporous carbon: Extraordinary bifunctional electrocatalysts for oxygen reduction and evolution reactions. ACS Applied Materials & Interfaces, 7, 1207–1218.CrossRefGoogle Scholar
  129. Smith, R. D. L., Prévot, M. S., Fagan, R. D., Trudel, S., & Berlinguette, C. P. (2013). Water oxidation catalysis: Electrocatalytic response to metal stoichiometry in amorphous metal oxide films containing Iron, cobalt, and nickel. Journal of the American Chemical Society, 135, 11580–11586.CrossRefGoogle Scholar
  130. Song, F., & Hu, X. (2014). Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis. Nature Communications, 5, 4477.CrossRefGoogle Scholar
  131. Song, F., Schenk, K., & Hu, X. (2016). A nanoporous oxygen evolution catalyst synthesized by selective electrochemical etching of perovskite hydroxide CoSn(OH)6 nanocubes. Energy & Environmental Science, 9, 473–477.CrossRefGoogle Scholar
  132. Subbaraman, R., Tripkovic, D., Chang, K.-C., Strmcnik, D., Paulikas, A. P., Hirunsit, P., Chan, M., Greeley, J., Stamenkovic, V., & Markovic, N. M. (2012). Trends in activity for the water electrolyser reactions on 3d M(Ni,Co,Fe,Mn) hydr(oxy)oxide catalysts. Nature Materials, 11, 550.CrossRefGoogle Scholar
  133. Sun, X., Dai, J., Guo, Y., Wu, C., Hu, F., Zhao, J., Zeng, X., & Xie, Y. (2014). Semimetallic molybdenum disulfide ultrathin nanosheets as an efficient electrocatalyst for hydrogen evolution. Nanoscale, 6, 8359–8367.CrossRefGoogle Scholar
  134. Suntivich, J., May, K. J., Gasteiger, H. A., Goodenough, J. B., & Shao-Horn, Y. (2011). A Perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science (80-. ), 334, 1383 LP–1385.CrossRefGoogle Scholar
  135. Tang, C., Gan, L., Zhang, R., Lu, W., Jiang, X., Asiri, A. M., Sun, X., Wang, J., & Chen, L. (2016). Ternary FexCo1–xP nanowire array as a robust hydrogen evolution reaction electrocatalyst with Pt-like activity: Experimental and theoretical insight. Nano Letters, 16, 6617–6621.CrossRefGoogle Scholar
  136. Tang, R., Nie, Y., Kawasaki, J. K., Kuo, D. -Y., Petretto, G., Hautier, G., Rignanese, G. -M., Shen, K. M., Schlom, D. G., & Suntivich, J. (2016). Oxygen evolution reaction electrocatalysis on SrIrO3 grown using molecular beam epitaxy. Journal of Materials Chemistry A, 4, 6831–6836.Google Scholar
  137. Tian, J., Liu, Q., Asiri, A. M., & Sun, X. (2014a). Self-supported nanoporous cobalt phosphide nanowire arrays: An efficient 3D hydrogen-evolving cathode over the wide range of pH 0–14. Journal of the American Chemical Society, 136, 7587–7590.CrossRefGoogle Scholar
  138. Tian, J., Liu, Q., Cheng, N., Asiri, A. M., & Sun, X. (2014b). Self-supported Cu3P nanowire arrays as an integrated high-performance three-dimensional cathode for generating hydrogen from water. Angewandte Chemie, 126, 9731–9735.CrossRefGoogle Scholar
  139. Tran, P. D., Chiam, S. Y., Boix, P. P., Ren, Y., Pramana, S. S., Fize, J., Artero, V., & Barber, J. (2013). Novel cobalt/nickel–tungsten-sulfide catalysts for electrocatalytic hydrogen generation from water. Energy & Environmental Science, 6, 2452–2459.CrossRefGoogle Scholar
  140. Trasatti, S. (1984). Electrocatalysis in the anodic evolution of oxygen and chlorine. Electrochimica Acta, 29, 1503–1512.CrossRefGoogle Scholar
  141. Trotochaud, L., Ranney, J. K., Williams, K. N., & Boettcher, S. W. (2012). Solution-cast metal oxide thin film electrocatalysts for oxygen evolution. Journal of the American Chemical Society, 134, 17253–17261.CrossRefGoogle Scholar
  142. Vasić Anićijević, D. D., Nikolić, V. M., Marčeta-Kaninski, M. P., & Pašti, I. A. (2013). Is platinum necessary for efficient hydrogen evolution? – DFT study of metal monolayers on tungsten carbide. International Journal of Hydrogen Energy, 38, 16071–16079.CrossRefGoogle Scholar
  143. Voiry, D., Salehi, M., Silva, R., Fujita, T., Chen, M., Asefa, T., Shenoy, V. B., Eda, G., & Chhowalla, M. (2013a). Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction. Nano Letters, 13, 6222–6227.CrossRefGoogle Scholar
  144. Voiry, D., Yamaguchi, H., Li, J., Silva, R., Alves, D. C. B., Fujita, T., Chen, M., Asefa, T., Shenoy, V. B., Eda, G., & Chhowalla, M. (2013b). Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nature Materials, 12, 850.CrossRefGoogle Scholar
  145. Wang, D., Pan, Z., Wu, Z., Wang, Z., & Liu, Z. (2014). Hydrothermal synthesis of MoS2 nanoflowers as highly efficient hydrogen evolution reaction catalysts. Journal of Power Sources, 264, 229–234.Google Scholar
  146. Wang, D., Wang, Z., Wang, C., Zhou, P., Wu, Z., & Liu, Z. (2013). Distorted MoS2 nanostructures: An efficient catalyst for the electrochemical hydrogen evolution reaction. Electrochemistry Communications, 34, 219–222.Google Scholar
  147. Wang, H., Kong, D., Johanes, P., Cha, J. J., Zheng, G., Yan, K., Liu, N., & Cui, Y. (2013). MoSe2 and WSe2 nanofilms with vertically aligned molecular layers on curved and rough surfaces. Nano Letters, 13, 3426–3433.CrossRefGoogle Scholar
  148. Wang, H., Lee, H. -W., Deng, Y., Lu, Z., Hsu, P. -C., Liu, Y., Lin, D., & Cui, Y. (2015). Bifunctional non-noble metal oxide nanoparticle electrocatalysts through lithium-induced conversion for overall water splitting. Nature Communications, 6, 7261.Google Scholar
  149. Wang, R., Dong, X.-Y., Du, J., Zhao, J.-Y., & Zang, S.-Q. (2018). MOF-derived bifunctional Cu3P nanoparticles coated by a N,P-codoped carbon shell for hydrogen evolution and oxygen reduction. Advanced Materials, 30, 1703711.CrossRefGoogle Scholar
  150. Wang, X., Kolen’ko, Y. V., Bao, X.-Q., Kovnir, K., & Liu, L. (2015). One-step synthesis of self-supported nickel phosphide nanosheet array cathodes for efficient electrocatalytic hydrogen generation. Angewandte Chemie, 127, 8306–8310.CrossRefGoogle Scholar
  151. Wang, Y., Zhou, T., Jiang, K., Da, P., Peng, Z., Tang, J., Kong, B., Cai, W. -B., Yang, Z., & Zheng, G. (2014). Electrocatalysis: Reduced Mesoporous Co3O4 nanowires as efficient water oxidation electrocatalysts and supercapacitor electrodes (Adv. Energy Mater. 16/2014). Advanced Energy Materials, 4: 1400696.Google Scholar
  152. Wu, T., Pi, M., Wang, X., Guo, W., Zhang, D., & Chen, S. (2017a). Developing bifunctional electrocatalyst for overall water splitting using three-dimensional porous CoP3 nanospheres integrated on carbon cloth. Journal of Alloys and Compounds, 729, 203–209.CrossRefGoogle Scholar
  153. Wu, T., Pi, M., Wang, X., Zhang, D., & Chen, S. (2017b). Three-dimensional metal–organic framework derived porous CoP3 concave polyhedrons as superior bifunctional electrocatalysts for the evolution of hydrogen and oxygen. Physical Chemistry Chemical Physics, 19, 2104–2110.CrossRefGoogle Scholar
  154. Wu, X., & Scott, K. (2013). A Li-doped Co3O4 oxygen evolution catalyst for non-precious metal alkaline anion exchange membrane water electrolysers. International Journal of Hydrogen Energy, 38, 3123–3129.CrossRefGoogle Scholar
  155. Wu, Z., Fang, B., Wang, Z., Wang, C., Liu, Z., Liu, F., Wang, W., Alfantazi, A., Wang, D., & Wilkinson, D. P. (2013). MoS2 nanosheets: A designed structure with high active site density for the hydrogen evolution reaction. ACS Catalysis, 3, 2101–2107.CrossRefGoogle Scholar
  156. Xia, X., Figueroa-Cosme, L., Tao, J., Peng, H.-C., Niu, G., Zhu, Y., & Xia, Y. (2014). Facile synthesis of iridium nanocrystals with well-controlled facets using seed-mediated growth. Journal of the American Chemical Society, 136, 10878–10881.CrossRefGoogle Scholar
  157. Xiao, P., Sk, M. A., Thia, L., Ge, X., Lim, R. J., Wang, J.-Y., Lim, K. H., & Wang, X. (2014). Molybdenum phosphide as an efficient electrocatalyst for the hydrogen evolution reaction. Energy & Environmental Science, 7, 2624–2629.CrossRefGoogle Scholar
  158. Xie, J., Zhang, J., Li, S., Grote, F., Zhang, X., Zhang, H., Wang, R., Lei, Y., Pan, B., & Xie, Y. (2013). Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin Nanosheets for efficient hydrogen evolution. Journal of the American Chemical Society, 135, 17881–17888.CrossRefGoogle Scholar
  159. Xing, Z., Liu, Q., Asiri, A. M., & Sun, X. (2014). Closely interconnected network of molybdenum phosphide nanoparticles: A highly efficient Electrocatalyst for generating hydrogen from water. Advanced Materials, 26, 5702–5707.CrossRefGoogle Scholar
  160. Xing, Z., Liu, Q., Asiri, A. M., & Sun, X. (2015). High-efficiency electrochemical hydrogen evolution catalyzed by tungsten phosphide submicroparticles. ACS Catalysis, 5, 145–149.CrossRefGoogle Scholar
  161. Yan, X., Tian, L., He, M., & Chen, X. (2015). Three-dimensional crystalline/amorphous Co/Co3O4 core/shell nanosheets as efficient Electrocatalysts for the hydrogen evolution reaction. Nano Letters, 15, 6015–6021.CrossRefGoogle Scholar
  162. Yang, H., Zhang, Y., Hu, F., & Wang, Q. (2015). Urchin-like CoP nanocrystals as hydrogen evolution reaction and oxygen reduction reaction dual-electrocatalyst with superior stability. Nano Letters, 15, 7616–7620.CrossRefGoogle Scholar
  163. Yang, J., Voiry, D., Ahn, S. J., Kang, D., Kim, A. Y., Chhowalla, M., & Shin, H. S. (2013). Two-dimensional hybrid nanosheets of tungsten disulfide and reduced graphene oxide as catalysts for enhanced hydrogen evolution. Angewandte Chemie International Edition, 52, 13751–13754.CrossRefGoogle Scholar
  164. Yang, J., Zhang, F., Wang, X., He, D., Wu, G., Yang, Q., Hong, X., Wu, Y., & Li, Y. (2016). Porous molybdenum phosphide Nano-Octahedrons derived from confined phosphorization in UIO-66 for efficient hydrogen evolution. Angewandte Chemie International Edition, 55, 12854–12858.CrossRefGoogle Scholar
  165. Yang, J., Zhu, G., Liu, Y., Xia, J., Ji, Z., Shen, X., & Wu, S. (2016). Fe3O4-decorated Co9S8 nanoparticles in situ grown on reduced graphene oxide: A new and efficient electrocatalyst for oxygen evolution reaction. Advanced Functional Materials, 26, 4712–4721.CrossRefGoogle Scholar
  166. Yang, Y., Fei, H., Ruan, G., Xiang, C., & Tour, J. M. (2014). Edge-oriented MoS2 nanoporous films as flexible electrodes for hydrogen evolution reactions and supercapacitor devices. Advanced Materials, 26, 8163–8168.CrossRefGoogle Scholar
  167. Ye, R., del Angel-Vicente, P., Liu, Y., Arellano-Jimenez, M. J., Peng, Z., Wang, T., Li, Y., Yakobson, B. I., Wei, S.-H., Yacaman, M. J., & Tour, J. M. (2016). High-performance hydrogen evolution from MoS2(1–x)P x solid solution. Advanced Materials, 28, 1427–1432.CrossRefGoogle Scholar
  168. Yeo, R. S., Orehotsky, J., Visscher, W., & Srinivasan, S. (1981). Ruthenium-based mixed oxides as electrocatalysts for oxygen evolution in acid electrolytes. Journal of the Electrochemical Society, 128, 1900–1904.CrossRefGoogle Scholar
  169. Yu, Y., Huang, S.-Y., Li, Y., Steinmann, S. N., Yang, W., & Cao, L. (2014). Layer-dependent electrocatalysis of MoS2 for hydrogen evolution. Nano Letters, 14, 553–558.CrossRefGoogle Scholar
  170. Yuan, L., Yan, Z., Jiang, L., Wang, E., Wang, S., & Sun, G. (2016). Gold-iridium bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. Journal of Energy Chemistry, 25, 805–810.CrossRefGoogle Scholar
  171. Zhang, C., Huang, Y., Yu, Y., Zhang, J., Zhuo, S., & Zhang, B. (2017). Sub-1.1 nm ultrathin porous CoP nanosheets with dominant reactive {200} facets: A high mass activity and efficient electrocatalyst for the hydrogen evolution reaction. Chemical Science, 8, 2769–2775.CrossRefGoogle Scholar
  172. Zhang, K., Kim, H.-J., Lee, J.-T., Chang, G.-W., Shi, X., Kim, W., Ma, M., Kong, K., Choi, J.-M., Song, M.-S., & Park, J. H. (2014). Unconventional pore and defect generation in molybdenum disulfide: Application in high-rate lithium-ion batteries and the hydrogen evolution reaction. ChemSusChem, 7, 2489–2495.CrossRefGoogle Scholar
  173. Zhang, L., Wu, H. B., Yan, Y., Wang, X., & Lou, X. W. (David). (2014). Hierarchical MoS2 microboxes constructed by nanosheets with enhanced electrochemical properties for lithium storage and water splitting. Energy & Environmental Science, 7, 3302–3306.Google Scholar
  174. Zhang, T., Wu, M.-Y., Yan, D.-Y., Mao, J., Liu, H., Hu, W.-B., Du, X.-W., Ling, T., & Qiao, S.-Z. (2018). Engineering oxygen vacancy on NiO nanorod arrays for alkaline hydrogen evolution. Nano Energy, 43, 103–109.CrossRefGoogle Scholar
  175. Zhang, X., Yu, X., Zhang, L., Zhou, F., Liang, Y., & Wang, R. (2018). Molybdenum phosphide/carbon nanotube hybrids as pH-universal electrocatalysts for hydrogen evolution reaction. Advanced Functional Materials, 28, 1706523.Google Scholar
  176. Zhang, Y., Ding, F., Deng, C., Zhen, S., Li, X., Xue, Y., Yan, Y. M., & Sun, K. (2015). Crystal plane-dependent electrocatalytic activity of Co3O4 toward oxygen evolution reaction. Catalysis Communications, 67, 78–82.Google Scholar
  177. Zheng, T., Sang, W., He, Z., Wei, Q., Chen, B., Li, H., Cao, C., Huang, R., Yan, X., Pan, B., Zhou, S., & Zeng, J. (2017). Conductive tungsten oxide nanosheets for highly efficient hydrogen evolution. Nano Letters, 17, 7968–7973.CrossRefGoogle Scholar
  178. Zheng, Y., Jiao, Y., Jaroniec, M., & Qiao, S. Z. (2015). Advancing the electrochemistry of the hydrogen-evolution reaction through combining experiment and theory. Angewandte Chemie International Edition, 54, 52–65.CrossRefGoogle Scholar
  179. Zhong, X., Sun, Y., Chen, X., Zhuang, G., Li, X., & Wang, J.-G. (2016). Mo doping induced more active sites in Urchin-Like W18O49 nanostructure with remarkably enhanced performance for hydrogen evolution reaction. Advanced Functional Materials, 26, 5778–5786.CrossRefGoogle Scholar
  180. Zhou, W., Hou, D., Sang, Y., Yao, S., Zhou, J., Li, G., Li, L., Liu, H., & Chen, S. (2014). MoO2 nanobelts@nitrogen self-doped MoS2 nanosheets as effective electrocatalysts for hydrogen evolution reaction. Journal of Materials Chemistry A, 2, 11358–11364.CrossRefGoogle Scholar
  181. Zhou, W., Wu, X.-J., Cao, X., Huang, X., Tan, C., Tian, J., Liu, H., Wang, J., & Zhang, H. (2013). Ni3S2 nanorods/Ni foam composite electrode with low overpotential for electrocatalytic oxygen evolution. Energy & Environmental Science, 6, 2921–2924.CrossRefGoogle Scholar
  182. Zhou, W., Zheng, J.-L., Yue, Y.-H., & Guo, L. (2015). Highly stable rGO-wrapped Ni3S2 nanobowls: Structure fabrication and superior long-life electrochemical performance in LIBs. Nano Energy, 11, 428–435.CrossRefGoogle Scholar
  183. Zhou, X., Jiang, J., Ding, T., Zhang, J., Pan, B., Zuo, J., & Yang, Q. (2014). Fast colloidal synthesis of scalable Mo-rich hierarchical ultrathin MoSe2−x nanosheets for high-performance hydrogen evolution. Nanoscale, 6, 11046–11051.Google Scholar
  184. Zhu, Y., Zhou, W., Sunarso, J., Zhong, Y., & Shao, Z. (2016). Phosphorus-doped Perovskite oxide as highly efficient water oxidation electrocatalyst in alkaline solution. Advanced Functional Materials, 26, 5862–5872.CrossRefGoogle Scholar
  185. Zou, X., Su, J., Silva, R., Goswami, A., Sathe, B. R., & Asefa, T. (2013). Efficient oxygen evolution reaction catalyzed by low-density Ni-doped Co3O4 nanomaterials derived from metal-embedded graphitic C3N4. Chemical Communications, 49, 7522–7524.CrossRefGoogle Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Aneeya Kumar Samantara
    • 1
  • Satyajit Ratha
    • 2
  1. 1.School of Chemical SciencesNational Institute of Science Education and ResearchKhordhaIndia
  2. 2.School of Basic SciencesIndian Institute of TechnologyBhubaneswarIndia

Personalised recommendations