Advertisement

Systemic Therapies of Young Breast Cancer Patients at High Genetic Risk

  • Shani Paluch-ShimonEmail author
  • Bella Kaufman
  • Ella Evron
Chapter
  • 72 Downloads

Abstract

Young women with breast cancer are more likely to harbor a germline mutation predisposing them to cancer. The most common germline mutations among young women with breast cancer are BRCA1 and BRCA2. BRCA-associated breast cancers have unique characteristics, and BRCA1-associated tumors are more often triple-negative or basal subtype and high grade, while BRCA2-associated tumors are more commonly endocrine responsive. BRCA-associated tumors are often highly chemo-sensitive and are particularly susceptible to platinum agents and PARP inhibitors. The therapeutic impact of a germline mutation in other cancer predisposition genes is still being evaluated.

Keywords

BRCA1 BRCA2 Hereditary cancer PARP inhibitors 

References

  1. 1.
    Ford D, Easton DF, Stratton M, et al. Genetic heterogeneity and penetrance analysis of the BRCA1 and BRCA2 genes in breast cancer families. The Breast Cancer Linkage Consortium. Am J Hum Genet. 1998;62:676–89.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Roa BB, Boyd AA, Volcik K, Richards CS. Ashkenazi Jewish population frequencies for common mutations in BRCA1 and BRCA2. Nat Genet. 1996;14:185–7.PubMedCrossRefGoogle Scholar
  3. 3.
    Paul A, Paul S. The breast cancer susceptibility genes (BRCA) in breast and ovarian cancers. Front Biosci (Landmark Ed). 2014;19:605–18.CrossRefGoogle Scholar
  4. 4.
    King MC, Marks JH, Mandell JB, New York Breast Cancer Study Group. Breast and ovarian cancer risks due to inherited mutations in BRCA1 and BRCA2. Science. 2003;302:643–6.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Walsh T, Casadei S, Lee MK, et al. Mutations in 12 genes for inherited ovarian, fallopian tube, and peritoneal carcinoma identified by massively parallel sequencing. Proc Natl Acad Sci U S A. 2011;108:18032–7.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Kuchenbaecker KB, Hopper JL, Barnes DR, et al. Risks of breast, ovarian, and contralateral breast cancer for BRCA1 and BRCA2 mutation carriers. JAMA. 2017;317:2402–16.PubMedCrossRefGoogle Scholar
  7. 7.
    Mersch J, Jackson MA, Park M, et al. Cancers associated with BRCA1 and BRCA2 mutations other than breast and ovarian. Cancer. 2015;121:269–75.PubMedCrossRefGoogle Scholar
  8. 8.
    Easton DF, Pharoah PD, Antoniou AC, et al. Gene-panel sequencing and the prediction of breast-cancer risk. N Engl J Med. 2015;372:2243–57.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Rosenberg SM, Ruddy KJ, Tamimi RM, et al. BRCA1 and BRCA2 mutation testing in young women with breast cancer. JAMA Oncol. 2016;2:730–6.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Xu X, Weaver Z, Linke SP, et al. Centrosome amplification and a defective G2-M cell cycle checkpoint induce genetic instability in BRCA1 exon 11 isoform-deficient cells. Mol Cell. 1999;3:389–95.PubMedCrossRefGoogle Scholar
  11. 11.
    Yu VP, Koehler M, Steinlein C, et al. Gross chromosomal rearrangements and genetic exchange between nonhomologous chromosomes following BRCA2 inactivation. Genes Dev. 2000;14:1400–6.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Foulkes WD, Shuen AY. In brief: BRCA1 and BRCA2. J Pathol. 2013;230:347–9.PubMedCrossRefGoogle Scholar
  13. 13.
    Pardo B, Gomez-Gonzalez B, Aguilera A. DNA repair in mammalian cells: DNA double-strand break repair: how to fix a broken relationship. Cell Mol Life Sci. 2009;66:1039–56.PubMedCrossRefGoogle Scholar
  14. 14.
    Venkitaraman AR. Linking the cellular functions of BRCA genes to cancer pathogenesis and treatment. Annu Rev Pathol. 2009;4:461–87.PubMedCrossRefGoogle Scholar
  15. 15.
    Roy R, Chun J, Powell SN. BRCA1 and BRCA2: different roles in a common pathway of genome protection. Nat Rev Cancer. 2012;12:68–78.CrossRefGoogle Scholar
  16. 16.
    Yang H, Jeffrey PD, Miller J, et al. BRCA2 function in DNA binding and recombination from a BRCA2-DSS1-ssDNA structure. Science. 2002;297:1837–48.PubMedCrossRefGoogle Scholar
  17. 17.
    Jensen RB, Carreira A, Kowalczykowski SC. Purified human BRCA2 stimulates RAD51-mediated recombination. Nature. 2010;467:678–83.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Wang B, Matsuoka S, Ballif BA, et al. Abraxas and RAP80 form a BRCA1 protein complex required for the DNA damage response. Science. 2007;316:1194–8.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Chen L, Nievera CJ, Lee AY, Wu X. Cell cycle-dependent complex formation of BRCA1.CtIP.MRN is important for DNA double-strand break repair. J Biol Chem. 2008;283:7713–20.  https://doi.org/10.1074/jbc.M710245200. Epub 2008 Jan 2CrossRefPubMedGoogle Scholar
  20. 20.
    Zhang F, Ma J, Wu J, et al. PALB2 links BRCA1 and BRCA2 in the DNA-damage response. Curr Biol. 2009;19:524–9.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Tutt A, Bertwistle D, Valentine J, et al. Mutation in Brca2 stimulates error-prone homology-directed repair of DNA double-strand breaks occurring between repeated sequences. EMBO J. 2001;20:4704–16.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Turner N, Tutt A, Ashworth A. Hallmarks of ‘BRCAness’ in sporadic cancers. Nat Rev Cancer. 2004;4:814–9.PubMedCrossRefGoogle Scholar
  23. 23.
    Caestecker KW, Van de Walle GR. The role of BRCA1 in DNA double-strand repair: past and present. Exp Cell Res. 2013;319:575–87.PubMedCrossRefGoogle Scholar
  24. 24.
    Osorio A, de la Hoya M, Rodriguez-Lopez R, et al. Loss of heterozygosity analysis at the BRCA loci in tumor samples from patients with familial breast cancer. Int J Cancer. 2002;99:305–9.PubMedCrossRefGoogle Scholar
  25. 25.
    Cavalli LR, Singh B, Isaacs C, et al. Loss of heterozygosity in normal breast epithelial tissue and benign breast lesions in BRCA1/2 carriers with breast cancer. Cancer Genet Cytogenet. 2004;149:38–43.PubMedCrossRefGoogle Scholar
  26. 26.
    Konishi H, Mohseni M, Tamaki A, et al. Mutation of a single allele of the cancer susceptibility gene BRCA1 leads to genomic instability in human breast epithelial cells. Proc Natl Acad Sci U S A. 2011;108:17773–8.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Ludwig T, Chapman DL, Papaioannou VE, Efstratiadis A. Targeted mutations of breast cancer susceptibility gene homologs in mice: lethal phenotypes of Brca1, Brca2, Brca1/Brca2, Brca1/p53, and Brca2/p53 nullizygous embryos. Genes Dev. 1997;11:1226–41.PubMedCrossRefGoogle Scholar
  28. 28.
    Evers B, Jonkers J. Mouse models of BRCA1 and BRCA2 deficiency: past lessons, current understanding and future prospects. Oncogene. 2006;25:5885–97.PubMedCrossRefGoogle Scholar
  29. 29.
    Leegte B, van der Hout AH, Deffenbaugh AM, et al. Phenotypic expression of double heterozygosity for BRCA1 and BRCA2 germline mutations. J Med Genet. 2005;42:e20.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Spannuth WA, Thaker PH, Sood AK. Concomitant BRCA1 and BRCA2 gene mutations in an Ashkenazi Jewish woman with primary breast and ovarian cancer. Am J Obstet Gynecol. 2007;196:e6–9.PubMedCrossRefGoogle Scholar
  31. 31.
    Greenblatt MS, Chappuis PO, Bond JP, et al. TP53 mutations in breast cancer associated with BRCA1 or BRCA2 germ-line mutations: distinctive spectrum and structural distribution. Cancer Res. 2001;61:4092–7.PubMedGoogle Scholar
  32. 32.
    Holstege H, Joosse SA, van Oostrom CT, et al. High incidence of protein-truncating TP53 mutations in BRCA1-related breast cancer. Cancer Res. 2009;69:3625–33.PubMedCrossRefGoogle Scholar
  33. 33.
    Sedic M, Kuperwasser C. BRCA1-hapoinsufficiency: unraveling the molecular and cellular basis for tissue-specific cancer. Cell Cycle. 2017;15:621–7.CrossRefGoogle Scholar
  34. 34.
    Monteiro AN. BRCA1: the enigma of tissue-specific tumor development. Trends Genet. 2003;19:312–5.PubMedCrossRefGoogle Scholar
  35. 35.
    Elledge SJ, Amon A. The BRCA1 suppressor hypothesis: an explanation for the tissue-specific tumor development in BRCA1 patients. Cancer Cell. 2002;1:129–32.PubMedCrossRefGoogle Scholar
  36. 36.
    Sedic M, Skibinski A, Brown N, et al. Haploinsufficiency for BRCA1 leads to cell-type-specific genomic instability and premature senescence. Nat Commun. 2015;6:7505.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Palacios J, Robles-Frias MJ, Castilla MA, et al. The molecular pathology of hereditary breast cancer. Pathobiology. 2008;75:85–94.PubMedCrossRefGoogle Scholar
  38. 38.
    Mavaddat N, Barrowdale D, Andrulis IL, et al. Pathology of breast and ovarian cancers among BRCA1 and BRCA2 mutation carriers: results from the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA). Cancer Epidemiol Biomark Prev. 2012;21:134–47.CrossRefGoogle Scholar
  39. 39.
    Lakhani SR, Van De Vijver MJ, Jacquemier J, et al. The pathology of familial breast cancer: predictive value of immunohistochemical markers estrogen receptor, progesterone receptor, HER-2, and p53 in patients with mutations in BRCA1 and BRCA2. J Clin Oncol. 2002;20:2310–8.PubMedCrossRefGoogle Scholar
  40. 40.
    Honrado E, Benitez J, Palacios J. Histopathology of BRCA1- and BRCA2-associated breast cancer. Crit Rev Oncol Hematol. 2006;59:27–39.PubMedCrossRefGoogle Scholar
  41. 41.
    Atchley DP, Albarracin CT, Lopez A, et al. Clinical and pathologic characteristics of patients with BRCA-positive and BRCA-negative breast cancer. J Clin Oncol. 2008;26:4282–8.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Molyneux G, Smalley MJ. The cell of origin of BRCA1 mutation-associated breast cancer: a cautionary tale of gene expression profiling. J Mammary Gland Biol Neoplasia. 2011;16:51–5.PubMedCrossRefGoogle Scholar
  43. 43.
    Molyneux G, Geyer FC, Magnay FA, et al. BRCA1 basal-like breast cancers originate from luminal epithelial progenitors and not from basal stem cells. Cell Stem Cell. 2010;7:403–17.PubMedCrossRefGoogle Scholar
  44. 44.
    Lim E, Vaillant F, Wu D, et al. Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers. Nat Med. 2009;15:907–13.PubMedCrossRefGoogle Scholar
  45. 45.
    Saal LH, Gruvberger-Saal SK, Persson C, et al. Recurrent gross mutations of the PTEN tumor suppressor gene in breast cancers with deficient DSB repair. Nat Genet. 2008;40:102–7.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Eerola H, Heikkila P, Tamminen A, et al. Histopathological features of breast tumours in BRCA1, BRCA2 and mutation-negative breast cancer families. Breast Cancer Res. 2005;7:R93–100.PubMedCrossRefGoogle Scholar
  47. 47.
    Lewin R, Sulkes A, Shochat T, et al. Oncotype-DX recurrence score distribution in breast cancer patients with BRCA1/2 mutations. Breast Cancer Res Treat. 2016;157:511–6.PubMedCrossRefGoogle Scholar
  48. 48.
    Halpern N, Sonnenblick A, Uziely B, et al. Oncotype Dx recurrence score among BRCA1/2 germline mutation carriers with hormone receptors positive breast cancer. Int J Cancer. 2017;140:2145–9.PubMedCrossRefGoogle Scholar
  49. 49.
    Goodwin PJ, Phillips KA, West DW, et al. Breast cancer prognosis in BRCA1 and BRCA2 mutation carriers: an International Prospective Breast Cancer Family Registry population-based cohort study. J Clin Oncol. 2012;30:19–26.PubMedCrossRefGoogle Scholar
  50. 50.
    Rennert G, Bisland-Naggan S, Barnett-Griness O, et al. Clinical outcomes of breast cancer in carriers of BRCA1 and BRCA2 mutations. N Engl J Med. 2007;357:115–23.PubMedCrossRefGoogle Scholar
  51. 51.
    Huzarski T, Byrski T, Gronwald J, et al. Ten-year survival in patients with BRCA1-negative and BRCA1-positive breast cancer. J Clin Oncol. 2013;31:3191–6.PubMedCrossRefGoogle Scholar
  52. 52.
    El-Tamer M, Russo D, Troxel A, et al. Survival and recurrence after breast cancer in BRCA1/2 mutation carriers. Ann Surg Oncol. 2004;11:157–64.PubMedCrossRefGoogle Scholar
  53. 53.
    Veronesi A, de Giacomi C, Magri MD, et al. Familial breast cancer: characteristics and outcome of BRCA 1-2 positive and negative cases. BMC Cancer. 2005;5:70.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Brekelmans CT, Seynaeve C, Menke-Pluymers M, et al. Survival and prognostic factors in BRCA1-associated breast cancer. Ann Oncol. 2006;17:391–400.PubMedCrossRefGoogle Scholar
  55. 55.
    Arun B, Bayraktar S, Liu DD, et al. Response to neoadjuvant systemic therapy for breast cancer in BRCA mutation carriers and noncarriers: a single-institution experience. J Clin Oncol. 2011;29:3739–46.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Bonadona V, Dussart-Moser S, Voirin N, et al. Prognosis of early-onset breast cancer based on BRCA1/2 mutation status in a French population-based cohort and review. Breast Cancer Res Treat. 2007;101:233–45.PubMedCrossRefGoogle Scholar
  57. 57.
    Foulkes WD, Chappuis PO, Wong N, et al. Primary node negative breast cancer in BRCA1 mutation carriers has a poor outcome. Ann Oncol. 2000;11:307–13.PubMedCrossRefGoogle Scholar
  58. 58.
    Moller P, Borg A, Evans DG, et al. Survival in prospectively ascertained familial breast cancer: analysis of a series stratified by tumour characteristics, BRCA mutations and oophorectomy. Int J Cancer. 2002;101:555–9.PubMedCrossRefGoogle Scholar
  59. 59.
    Robson ME, Chappuis PO, Satagopan J, et al. A combined analysis of outcome following breast cancer: differences in survival based on BRCA1/BRCA2 mutation status and administration of adjuvant treatment. Breast Cancer Res. 2004;6:R8–R17.PubMedCrossRefGoogle Scholar
  60. 60.
    Chalasani P, Livingston R. Differential chemotherapeutic sensitivity for breast tumors with “BRCAness”: a review. Oncologist. 2013;18:909–16.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Bayraktar S, Gluck S. Systemic therapy options in BRCA mutation-associated breast cancer. Breast Cancer Res Treat. 2013;135:355–66.CrossRefGoogle Scholar
  62. 62.
    Zhong Q, Peng HL, Zhao X, et al. Effects of BRCA1- and BRCA2-related mutations on ovarian and breast cancer survival: a meta-analysis. Clin Cancer Res. 2015;21:211–20.PubMedCrossRefGoogle Scholar
  63. 63.
    van den Broek AJ, Schmidt MK, van’t Veer LJ, et al. Worse breast cancer prognosis of BRCA1/BRCA2 mutation carriers: what’s the evidence? A systematic review with meta-analysis. PLoS One. 2015;10:2015.Google Scholar
  64. 64.
    Lee EH, Park SK, Park B, et al. Effect of BRCA1/2 mutation on short-term and long-term breast cancer survival: a systematic review and meta-analysis. Breast Cancer Res Treat. 2010;122:11–25.PubMedCrossRefGoogle Scholar
  65. 65.
    Baretta Z, Mocellin S, Goldin E, et al. Effect of BRCA germline mutations on breast cancer prognosis: a systematic review and meta-analysis. Medicine. 2016;95:e4975.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Tassone P, Tagliaferri P, Perricelli A, et al. BRCA1 expression modulates chemosensitivity of BRCA1-defective HCC1937 human breast cancer cells. Br J Cancer. 2003;88:1285–91.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Quinn JE, Kennedy RD, Mullan PB, et al. BRCA1 functions as a differential modulator of chemotherapy-induced apoptosis. Cancer Res. 2003;63:6221–8.PubMedGoogle Scholar
  68. 68.
    Kennedy RD, Quinn JE, Mullan PB, et al. The role of BRCA1 in the cellular response to chemotherapy. J Natl Cancer Inst. 2004;96:1659–68.PubMedCrossRefGoogle Scholar
  69. 69.
    Foulkes WD. BRCA1 and BRCA2: chemosensitivity, treatment outcomes and prognosis. Familial Cancer. 2006;5:135–42.PubMedCrossRefGoogle Scholar
  70. 70.
    Kriege M, Seynaeve C, Meijers-Heijboer H, et al. Sensitivity to first-line chemotherapy for metastatic breast cancer in BRCA1 and BRCA2 mutation carriers. J Clin Oncol. 2009;27:3764–71.PubMedCrossRefGoogle Scholar
  71. 71.
    Byrski T, Gronwald J, Huzarski T, et al. Pathologic complete response rates in young women with BRCA1-positive breast cancers after neoadjuvant chemotherapy. J Clin Oncol. 2010;28:375–9.PubMedCrossRefGoogle Scholar
  72. 72.
    Byrski T, Dent R, Blecharz P, et al. Results of a phase II open-label, non-randomized trial of cisplatin chemotherapy in patients with BRCA1-positive metastatic breast cancer. Breast Cancer Res. 2014;14:R110.CrossRefGoogle Scholar
  73. 73.
    Wysocki PJ, Korski K, Lamperska K, et al. Primary resistance to docetaxel-based chemotherapy in metastatic breast cancer patients correlates with a high frequency of BRCA1 mutations. Med Sci Monit. 2008;14:SC7–10.PubMedGoogle Scholar
  74. 74.
    Byrski T, Gronwald J, Huzarski T, et al. Response to neo-adjuvant chemotherapy in women with BRCA1-positive breast cancers. Breast Cancer Res Treat. 2008;108:289–96.PubMedCrossRefGoogle Scholar
  75. 75.
    Kriege M, Jager A, Hooning MJ, et al. The efficacy of taxane chemotherapy for metastatic breast cancer in BRCA1 and BRCA2 mutation carriers. Cancer. 2012;118:899–907.PubMedCrossRefGoogle Scholar
  76. 76.
    Raphael J, Mazouni C, Caron O, et al. Should BRCA2 mutation carriers avoid neoadjuvant chemotherapy? Med Oncol. 2014;31:850.PubMedCrossRefGoogle Scholar
  77. 77.
    Paluch-Shimon S, Friedman E, Berger R, et al. Neo-adjuvant doxorubicin and cyclophosphamide followed by paclitaxel in triple-negative breast cancer among BRCA1 mutation carriers and non-carriers. Breast Cancer Res Treat. 2016;157:157–65.PubMedCrossRefGoogle Scholar
  78. 78.
    Esteller M, Silva JM, Dominguez G, et al. Promoter hypermethylation and BRCA1 inactivation in sporadic breast and ovarian tumors. J Natl Cancer Inst. 2000;92:564–9.PubMedCrossRefGoogle Scholar
  79. 79.
    Turner NC, Reis-Filho JS, Russell AM, et al. BRCA1 dysfunction in sporadic basal-like breast cancer. Oncogene. 2007;26:2126–32.PubMedCrossRefGoogle Scholar
  80. 80.
    Carey L, Winer E, Viale G, et al. Triple-negative breast cancer: disease entity or title of convenience? Nat Rev Clin Oncol. 2010;7:683–92.PubMedCrossRefGoogle Scholar
  81. 81.
    Curigliano G, Goldhirsch A. The triple-negative subtype: new ideas for the poorest prognosis breast cancer. J Natl Cancer Inst Monogr. 2011;2011:108–10.PubMedCrossRefGoogle Scholar
  82. 82.
    Telli ML, Jensen KC, Vinayak S, et al. Phase II study of gemcitabine, carboplatin, and iniparib as neoadjuvant therapy for triple-negative and BRCA1/2 mutation-associated breast cancer with assessment of a tumor-based measure of genomic instability: PrECOG 0105. J Clin Oncol. 2015;33:1895–901.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Telli ML, Timms KM, Reid J, et al. Homologous recombination deficiency (HRD) score predicts response to platinum-containing neoadjuvant chemotherapy in patients with triple-negative breast cancer. Clin Cancer Res. 2016;22:3764–73.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Telli M, McMillan A, Ford JM, et al. Homologous recombination deficiency (HRD) as a predictive biomarker of response to neoadjuvant platinum-based therapy in patients with triple negative breast cancer (TNBC): a pooled analysis. Cancer Res. 2016;76(4 Suppl):Abstract nr P3-07-12.Google Scholar
  85. 85.
    Isakoff SJ, Mayer EL, He L, et al. TBCRC009: a multicenter phase II clinical trial of platinum monotherapy with biomarker assessment in metastatic triple-negative breast cancer. J Clin Oncol. 2015;33:1902–9.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Silver DP, Richardson AL, Eklund AC, et al. Efficacy of neoadjuvant Cisplatin in triple-negative breast cancer. J Clin Oncol. 2010;28:1145–53.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    von Minckwitz G, Schneeweiss A, Loibl S, et al. Neoadjuvant carboplatin in patients with triple-negative and HER2-positive early breast cancer (GeparSixto; GBG 66): a randomised phase 2 trial. Lancet Oncol. 2014;15:747–56.CrossRefGoogle Scholar
  88. 88.
    Hahnen E, Lederer B, Hauke J, et al. Germline mutation status, pathological complete response, and disease-free survival in triple-negative breast cancer: secondary analysis of the GeparSixto Randomized Clinical Trial. JAMA Oncol. 2017;3:1378–85.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Carey LA. Targeted chemotherapy? Platinum in BRCA1-dysfunctional breast cancer. J Clin Oncol. 2010;28:361–3.PubMedCrossRefGoogle Scholar
  90. 90.
    Boudin L, Goncalves A, Sabatier R, et al. Highly favorable outcome in BRCA-mutated metastatic breast cancer patients receiving high-dose chemotherapy and autologous hematopoietic stem cell transplantation. Bone Marrow Transplant. 2016;51:1082–6.PubMedCrossRefGoogle Scholar
  91. 91.
    Pristauz G, Petru E, Stacher E, et al. Androgen receptor expression in breast cancer patients tested for BRCA1 and BRCA2 mutations. Histopathology. 2010;57:877–84.PubMedCrossRefGoogle Scholar
  92. 92.
    Farmer H, McCabe N, Lord CJ, et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature. 2005;434:917–21.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Fong PC, Boss DS, Yap TA, et al. Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N Engl J Med. 2009;361:123–34.PubMedCrossRefGoogle Scholar
  94. 94.
    Tutt A, Robson M, Garber JE, et al. Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and advanced breast cancer: a proof-of-concept trial. Lancet. 2010;376:235–44.PubMedCrossRefGoogle Scholar
  95. 95.
    Gelmon KA, Tischkowitz M, Mackay H, et al. Olaparib in patients with recurrent high-grade serous or poorly differentiated ovarian carcinoma or triple-negative breast cancer: a phase 2, multicentre, open-label, non-randomised study. Lancet Oncol. 2011;12:852–61.PubMedCrossRefGoogle Scholar
  96. 96.
    Kaufman B, Shapira-Frommer R, Schmutzler RK, et al. Olaparib monotherapy in patients with advanced cancer and a germline BRCA1/2 mutation. J Clin Oncol. 2015;33:244–50.PubMedCrossRefGoogle Scholar
  97. 97.
    Dent RA, Lindeman GJ, Clemons M, et al. Phase I trial of the oral PARP inhibitor olaparib in combination with paclitaxel for first- or second-line treatment of patients with metastatic triple-negative breast cancer. Breast Cancer Res. 2013;15:R88.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Balmana J, Tung NM, Isakoff SJ, et al. Phase I trial of olaparib in combination with cisplatin for the treatment of patients with advanced breast, ovarian and other solid tumors. Ann Oncol. 2014;25:1656–63.PubMedCrossRefGoogle Scholar
  99. 99.
    Lee JM, Hays JL, Annunziata CM, et al. Phase I/Ib study of olaparib and carboplatin in BRCA1 or BRCA2 mutation-associated breast or ovarian cancer with biomarker analyses. J Natl Cancer Inst. 2014;106:dju089.PubMedPubMedCentralGoogle Scholar
  100. 100.
    Matulonis UA, Wulf GM, Barry WT, et al. Phase I dose escalation study of the PI3kinase pathway inhibitor BKM120 and the oral poly (ADP ribose) polymerase (PARP) inhibitor olaparib for the treatment of high-grade serous ovarian and breast cancer. Ann Oncol. 2017;28:512–8.PubMedCrossRefGoogle Scholar
  101. 101.
    Tan AR, Toppmeyer D, Stein MN, et al. Phase I trial of veliparib, (ABT-888), a poly(ADP-ribose) polymerase (PARP) inhibitor, in combination with doxorubicin and cyclophosphamide in breast cancer and other solid tumors. J Clin Oncol. 2011;29:3041. ASCO Meeting AbstractsCrossRefGoogle Scholar
  102. 102.
    Somlo G, Sparano JA, Cigler T, et al. ABT-888 (veliparib) in combination with carboplatin in patients with stage IV BRCA-associated breast cancer. A California Cancer Consortium Trial. J Clin Oncol. 2012;30:1010. ASCO Meeting AbstractsCrossRefGoogle Scholar
  103. 103.
    Isakoff SJ, Overmoyer B, Tung NM, et al. A phase II trial of the PARP inhibitor veliparib (ABT888) and temozolomide for metastatic breast cancer. J Clin Oncol. 2010;28:1019. ASCO Meeting AbstractsCrossRefGoogle Scholar
  104. 104.
    Wolf DM, Yau C, Sanil A, et al. DNA repair deficiency biomarkers and the 70-gene ultra-high risk signature as predictors of veliparib/carboplatin response in the I-SPY 2 breast cancer trial. NPJ Breast Cancer. 2017;3:31.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Severson TM, Wolf DM, Yau C, et al. The BRCA1ness signature is associated significantly with response to PARP inhibitor treatment versus control in the I-SPY 2 randomized neoadjuvant setting. Breast Cancer Res. 2017;19:99.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Drew Y, Ledermann J, Hall G, et al. Phase 2 multicentre trial investigating intermittent and continuous dosing schedules of the poly(ADP-ribose) polymerase inhibitor rucaparib in germline BRCA mutation carriers with advanced ovarian and breast cancer. Br J Cancer. 2016;114:e21.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Wilson RH, Evans TJ, Middleton MR, et al. A phase I study of intravenous and oral rucaparib in combination with chemotherapy in patients with advanced solid tumours. Br J Cancer. 2017;116:884–92.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Sandhu SK, Schelman WR, Wilding G, et al. The poly(ADP-ribose) polymerase inhibitor niraparib (MK4827) in BRCA mutation carriers and patients with sporadic cancer: a phase 1 dose-escalation trial. Lancet Oncol. 2013;14:882–92.PubMedCrossRefGoogle Scholar
  109. 109.
    de Bono J, Ramanathan RK, Mina L, et al. Phase I, dose-escalation, two-part trial of the PARP inhibitor talazoparib in patients with advanced germline BRCA1/2 mutations and selected sporadic cancers. Cancer Discov. 2017;7:620–9.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Edwards SL, Brough R, Lord CJ, et al. Resistance to therapy caused by intragenic deletion in BRCA2. Nature. 2008;451:1111–5.PubMedCrossRefGoogle Scholar
  111. 111.
    Swisher EM, Sakai W, Karlan BY, et al. Secondary BRCA1 mutations in BRCA1-mutated ovarian carcinomas with platinum resistance. Cancer Res. 2008;68:2581–6.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Bouwman P, Jonkers J. Molecular pathways: how can BRCA-mutated tumors become resistant to PARP inhibitors? Clin Cancer Res. 2014;20:540–7.PubMedCrossRefGoogle Scholar
  113. 113.
    Delaloge S, Wolp-Diniz R, Byrski T, et al. Activity of trabectedin in germline BRCA1/2-mutated metastatic breast cancer: results of an international first-in-class phase II study. Ann Oncol. 2014;25:1152–8.PubMedCrossRefGoogle Scholar
  114. 114.
    Ghouadni A, Delaloge S, Lardelli P, et al. Higher antitumor activity of trabectedin in germline BRCA2 carriers with advanced breast cancer as compared to BRCA1 carriers: a subset analysis of a dedicated phase II trial. Breast. 2017;34:18–23.PubMedCrossRefGoogle Scholar
  115. 115.
    BalmanaJ, Cruz, C., Arun, B. Anti-tumor activity of PM01183(lurbinectedin) in BRCA1/2 associated metastatic breast cancer patients; results of a single-agent phase II trial. In ESMO. Annals of Oncology2016; 68–99.Google Scholar
  116. 116.
    Cardillo TM, Sharkey RM, Rossi DL, et al. Synthetic lethality exploitation by an Anti-Trop-2-SN-38 antibody-drug conjugate, IMMU-132, plus PARP inhibitors in BRCA1/2-wild-type triple-negative breast cancer. Clin Cancer Res. 2017;23:3405–15.PubMedCrossRefGoogle Scholar
  117. 117.
    Du Y, Yamaguchi H, Wei Y, et al. Blocking c-Met-mediated PARP1 phosphorylation enhances anti-tumor effects of PARP inhibitors. Nat Med. 2016;22:194–201.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Zimmer J, Tacconi EMC, Folio C, et al. Targeting BRCA1 and BRCA2 deficiencies with G-quadruplex-interacting compounds. Mol Cell. 2016;61:449–60.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Tung N, Lin NU, Kidd J, et al. Frequency of germline mutations in 25 cancer susceptibility genes in a sequential series of patients with breast cancer. J Clin Oncol. 2016;34:1460–8.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Tung N, Battelli C, Allen B, et al. Frequency of mutations in individuals with breast cancer referred for BRCA1 and BRCA2 testing using next-generation sequencing with a 25-gene panel. Cancer. 2015;121:25–33.PubMedCrossRefGoogle Scholar
  121. 121.
    McCuaig JM, Armel SR, Novokmet A, et al. Routine TP53 testing for breast cancer under age 30: ready for prime time? Familial Cancer. 2012;11:607–13.PubMedCrossRefGoogle Scholar
  122. 122.
    Weller M. Predicting response to cancer chemotherapy: the role of p53. Cell Tissue Res. 1998;292:435–45.PubMedCrossRefGoogle Scholar
  123. 123.
    Kappel S, Janschek E, Wolf B, et al. TP53 germline mutation may affect response to anticancer treatments: analysis of an intensively treated Li-Fraumeni family. Breast Cancer Res Treat. 2015;151:671–8.PubMedCrossRefGoogle Scholar
  124. 124.
    Bridges KA, Chen X, Liu H, et al. MK-8776, a novel chk1 kinase inhibitor, radiosensitizes p53-defective human tumor cells. Oncotarget. 2016;7:71660–72.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Hirai H, Iwasawa Y, Okada M, et al. Small-molecule inhibition of Wee1 kinase by MK-1775 selectively sensitizes p53-deficient tumor cells to DNA-damaging agents. Mol Cancer Ther. 2009;8:2992–3000.PubMedCrossRefGoogle Scholar
  126. 126.
    Markman B, Tabernero J, Krop I, et al. Phase I safety, pharmacokinetic, and pharmacodynamic study of the oral phosphatidylinositol-3-kinase and mTOR inhibitor BGT226 in patients with advanced solid tumors. Ann Oncol. 2012;23:2399–408.PubMedCrossRefGoogle Scholar
  127. 127.
    Tischkowitz M, Xia B. PALB2/FANCN: recombining cancer and Fanconi anemia. Cancer Res. 2010;70:7353–9.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Tung N, Domchek SM, Stadler Z, et al. Counselling framework for moderate-penetrance cancer-susceptibility mutations. Nat Rev Clin Oncol. 2016;13:581–8.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Ferreira AC, Suriano G, Mendes N, et al. E-cadherin impairment increases cell survival through Notch-dependent upregulation of Bcl-2. Hum Mol Genet. 2012;21:334–43.PubMedCrossRefGoogle Scholar
  130. 130.
    Mateus AR, Seruca R, Machado JC, et al. EGFR regulates RhoA-GTP dependent cell motility in E-cadherin mutant cells. Hum Mol Genet. 2007;16:1639–47.PubMedCrossRefGoogle Scholar
  131. 131.
    Mateus AR, Simoes-Correia J, Figueiredo J, et al. E-cadherin mutations and cell motility: a genotype-phenotype correlation. Exp Cell Res. 2009;315:1393–402.PubMedCrossRefGoogle Scholar
  132. 132.
    Hearle N, Schumacher V, Menko FH, et al. Frequency and spectrum of cancers in the Peutz-Jeghers syndrome. Clin Cancer Res. 2006;12:3209–15.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Shani Paluch-Shimon
    • 1
    Email author
  • Bella Kaufman
    • 2
  • Ella Evron
    • 3
  1. 1.Breast Oncology UnitShaare Zedek Medical CentreJerusalemIsrael
  2. 2.Breast Oncology InstituteSheba Medical CentreRamat GanIsrael
  3. 3.Sackler School of MedicineTel Aviv UniversityTel AvivIsrael

Personalised recommendations