Advertisement

Establishing a Program for Young Women at High Risk for Breast Cancer

  • Soley Bayraktar
  • Banu ArunEmail author
Chapter
  • 62 Downloads

Abstract

Based on current evidence, high-risk individuals require different screening and risk reduction strategies from those deployed for the population at large. Potential benefits of specialized programs for women with high breast cancer risk include more cost-effective interventions as a result of patient stratification on the basis of risk and gathering a prospective registry with data coordinators in the team that can be directed to further improvements in patient care.

Each high-risk program needs to be designed by its institution with consideration of local resources and country legislation, especially related to genetic issues. Development of a successful high-risk program includes identifying strengths, weaknesses, opportunities, and threats, developing a promotion plan, choosing a risk assessment tool, defining “high risk,” and planning screening and risk reduction strategies for the specific population served by the program.

Keywords

BRCA1 BRCA2 Genetic testing Timing Hereditary breast cancer Prophylactic mastectomy Prophylactic oophorectomy PARP inhibitors Platinums 

References

  1. 1.
  2. 2.
    Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin. 2018;68(1):7–30.CrossRefGoogle Scholar
  3. 3.
    Litton JK, Eralp Y, Gonzalez-Angulo AM, Broglio K, Uyei A, Hortobagyi GN, et al. Multifocal breast cancer in women < or =35 years old. Cancer. 2007;110(7):1445–50.PubMedCrossRefGoogle Scholar
  4. 4.
    Clamp A, Danson S, Clemons M. Hormonal risk factors for breast cancer: identification, chemoprevention, and other intervention strategies. Lancet Oncol. 2002;3(10):611–9.PubMedCrossRefGoogle Scholar
  5. 5.
    Collaborative Group on Hormonal Factors in Breast Cancer. Menarche m, and breast cancer risk: individual participant meta-analysis, including 118 964 women with breast cancer from 117 epidemiological studies. Lancet Oncol. 2012;13(11):1141–51.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Cadeau C, Fournier A, Mesrine S, et al. Postmenopausal breast cancer risk and interactions between body mass index, menopausal hormone therapy use, and vitamin D supplementation: Evidence from the E3N cohort. Int J Cancer. 2016;139(10):2193–200.PubMedCrossRefGoogle Scholar
  7. 7.
    Rossouw JE, Anderson GL, Prentice RL, LaCroix AZ, Kooperberg C, Stefanick ML, et al. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results From the Women’s Health Initiative randomized controlled trial. JAMA. 2002;288(3):321–33.PubMedCrossRefGoogle Scholar
  8. 8.
    Travis R, Key T. Oestrogen exposure and breast cancer risk. Breast Cancer Res. 2003;5(5):239–247.Google Scholar
  9. 9.
    Hilakivi-Clarke L, de Assis S, Warri A. Exposures to synthetic estrogens at different times during the life, and their effect on breast cancer risk. J Mammary Gland Biol Neoplasia. 2013;18:25–42.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    World Cancer Research Fund/American Institute for Cancer Research. Food, nutrition, physical activity, and the prevention of cancer: a global perspective. Washington, DC: AICR; 2007. http://www.wcrf.org/int/research-we-fund/continuous-update-project-cup/second-expert-report
  11. 11.
    Travis RC, Key TJ. Oestrogen exposure and breast cancer risk. Breast Cancer Res. 2003;5(5):239–47.Google Scholar
  12. 12.
    Henderson TO, Amsterdam A, Bhatia S, Hudson MM, Meadows AT, Neglia JP, et al. Systematic review: surveillance for breast cancer in women treated with chest radiation for childhood, adolescent, or young adult cancer. Ann Intern Med. 2010;152(7):444–55. W144–54PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Guibout C, Adjadj E, Rubino C, Shamsaldin A, Grimaud E, Hawkins M, et al. Malignant breast tumors after radiotherapy for a first cancer during childhood. J ClinOncol. 2005;23(1):197–204.CrossRefGoogle Scholar
  14. 14.
    Preston DL, Cullings H, Suyama A, et al. Solid cancer incidence in atomic bomb survivors exposed in utero or as young children. J Natl Cancer Inst. 2008;100:428–36.PubMedCrossRefGoogle Scholar
  15. 15.
    Pukkala E, Kesminiene A, Poliakov S, et al. Breast cancer in Belarus and Ukraine after the Chernobyl accident. Int J Cancer. 2006;119:651–8.PubMedCrossRefGoogle Scholar
  16. 16.
    Barlow WE, White E, Ballard-Barbash R, Vacek PM, Titus-Ernstoff L, Carney PA, et al. Prospective breast cancer risk prediction model for women undergoing screening mammography. J Natl Cancer Inst. 2006;98(17):1204–14.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Boyd NF, Guo H, Martin LJ, Sun L, Stone J, Fishell E, et al. Mammographic density and the risk and detection of breast cancer. N Engl J Med. 2007;356(3):227–36.CrossRefGoogle Scholar
  18. 18.
    McCormack VA, dos Santos Silva I. Breast density and parenchymal patterns as markers of breast cancer risk: a meta-analysis. Cancer EpidemiolBiomarkPrev. 2006;15:1159–69.Google Scholar
  19. 19.
    Pettersson A, Hankinson SE, Willett WC, Lagiou P, Trichopoulos D, Tamimi RM. Nondense mammographic area and risk of breast cancer. Breast Cancer Res. 2011;13(5):R100.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Rauh C, Hack CC, Häberle L, Hein A, Engel A, Schrauder MG, et al. Percent mammographic density and dense area as risk factors for breast cancer. GeburtshilfeFrauenheilkd. 2012;72:727–33.Google Scholar
  21. 21.
    Cote ML, Ruterbusch JJ, Alosh B, Bandyopadhyay S, Kim E, Albashiti B, et al. Benign breast disease and the risk of subsequent breast cancer in African American women. Cancer Prev Res (Phila). 2012;5(12):1375–80.CrossRefGoogle Scholar
  22. 22.
    Hartmann LC, Sellers TA, Frost MH, Lingle WL, Degnim AC, Ghosh K, et al. Benign breast disease and the risk of breast cancer. N Engl J Med. 2005;353(3):229–37.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Dupont WD, Parl FF, Hartmann WH, Brinton LA, Winfield AC, Worrell JA, et al. Breast cancer risk associated with proliferative breast disease and atypical hyperplasia. Cancer. 1993;71(4):1258–65.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Ward EM, De Santis CE, Lin CC, Kramer JL, Jemal A, Kohler B, et al. Cancer statistics: Breast cancer in situ. CA Cancer J Clin. 2015;65(6):481–95.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Kerlikowske K. Epidemiology of ductal carcinoma in situ. J Natl Cancer Inst Monogr. 2010;2010(41):139–41.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Welch HG, Black WC. Using autopsy series to estimate the disease “reservoir” for ductal carcinoma in situ of the breast: how much more breast cancer can we find? Ann Intern Med. 1997;127:1023–8.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Collins LC, Tamimi RM, Baer HJ, Connolly JL, Colditz GA, Schnitt SJ. Outcome of patients with ductal carcinoma in situ untreated after diagnostic biopsy: results from the Nurses’ Health Study. Cancer. 2005;103(9):1778–84.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Erbas B, Provenzano E, Armes J, Gertig D. The natural history of ductal carcinoma in situ of the breast: a review. Breast Cancer Res Treat. 2006;97(2):135–44.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Sanders ME, Schuyler PA, Simpson JF, Page DL, Dupont WD. Continued observation of the natural history of low-grade ductal carcinoma in situ reaffirms proclivity for local recurrence even after more than 30 years of follow-up. Mod Pathol. 2015;28(5):662–9.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Stuart KE, Houssami N, Taylor R, Hayen A, Boyages J. Long-term outcomes of ductal carcinoma in situ of the breast: a systematic review, meta-analysis and meta-regression analysis. BMC Cancer. 2015;15:890.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Inskip PD, Curtis RE. New malignancies following childhood cancer in the United States, 1973–2002. Int J Cancer. 2007;121(10):2233–40.PubMedCrossRefGoogle Scholar
  32. 32.
    Buist DS, Abraham LA, Barlow WE, Krishnaraj A, Holdridge RC, Sickles EA, et al. Diagnosis of second breast cancer events after initial diagnosis of early stage breast cancer. Breast Cancer Res Treat. 2010;124(3):863–73.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Colditz GA, Kaphingst KA, Hankinson SE, Rosner B. Family history and risk of breast cancer: nurses’ health study. Breast Cancer Res Treat. 2012;133(3):1097–104.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Collaborative Group on Hormonal Factors in Breast Cancer. Familial breast cancer: collaborative reanalysis of individual data from 52 epidemiological studies including 58,209 women with breast cancer and 101,986 women without the disease. Lancet. 2001;358(9291):1389–99.Google Scholar
  35. 35.
    Lynch HT, Lynch JF. Breast cancer genetics in an oncology clinic: 328 consecutive patients. Cancer Genet Cytogenet. 1986;22(4):369–71.PubMedCrossRefGoogle Scholar
  36. 36.
    Margolin S, Johansson H, Rutqvist LE, Lindblom A, Fornander T. Family history, and impact on clinical presentation and prognosis, in a population-based breast cancer cohort from the Stockholm County. Familial Cancer. 2006;5(4):309–21.PubMedCrossRefGoogle Scholar
  37. 37.
    Lalloo F, Evans DG. Familial breast cancer. Clin Genet. 2012;82(2):105–14.PubMedCrossRefGoogle Scholar
  38. 38.
    Sharif S, Moran A, Huson SM, Iddenden R, Shenton A, Howard E, et al. Women with neurofibromatosis 1 are at a moderately increased risk of developing breast cancer and should be considered for early screening. J Med Genet. 2007;44(8):481–4.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Mavaddat N, Barrowdale D, Andrulis IL, et al. Pathology of breast and ovarian cancers among BRCA1 and BRCA2 mutation carriers: results from the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA). Cancer EpidemiolBiomark Prev. 2012;21:134–47.CrossRefGoogle Scholar
  40. 40.
    Ford D, Easton DF, Stratton M, Narod S, Goldgar D, Devilee P, et al. Genetic heterogeneity and penetrance analysis of the BRCA1 and BRCA2 genes in breast cancer families. The Breast Cancer Linkage Consortium. Am J Hum Genet. 1998;62(3):676–89.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Antoniou A, Pharoah PD, Narod S, Risch HA, Eyfjord JE, Hopper JL, et al. Average risks of breast and ovarian cancer associated with BRCA1 or BRCA2 mutations detected in case Series unselected for family history: a combined analysis of 22 studies. Am J Hum Genet. 2003;72(5):1117–30.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    King MC, Marks JH, Mandell JB, New York Breast Cancer Study G. Breast and ovarian cancer risks due to inherited mutations in BRCA1 and BRCA2. Science. 2003;302:643–6.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Ziegler RG, Hoover RN, Pike MC, Hildesheim A, Nomura AM, West DW, et al. Migration patterns and breast cancer risk in Asian-American women. J Natl Cancer Inst. 1993;85(22):1819–27.PubMedCrossRefGoogle Scholar
  44. 44.
    Thompson D, Easton D. The genetic epidemiology of breast cancer genes. J Mammary Gland Biol Neoplasia. 2004;9(3):221–36.PubMedCrossRefGoogle Scholar
  45. 45.
    Diez O, Osorio A, Duran M, Martinez-Ferrandis JI, de la Hoya M, Salazar R, et al. Analysis of BRCA1 and BRCA2 genes in Spanish breast/ovarian cancer patients: a high proportion of mutations unique to Spain and evidence of founder effects. Hum Mutat. 2003;22(4):301–12.PubMedCrossRefGoogle Scholar
  46. 46.
    Mersch J, Jackson MA, Park M, Nebgen D, Peterson SK, Singletary C, et al. Cancers associated with BRCA1 and BRCA2 mutations other than breast and ovarian. Cancer. 2015;121(2):269–75.CrossRefGoogle Scholar
  47. 47.
    Thompson D, Duedal S, Kirner J, McGuffog L, Last J, Reiman A, et al. Cancer risks and mortality in heterozygous ATM mutation carriers. J Natl Cancer Inst. 2005;97(11):813–22.PubMedCrossRefGoogle Scholar
  48. 48.
    Seal S, Thompson D, Renwick A, Elliott A, Kelly P, Barfoot R, et al. Truncating mutations in the Fanconi anemia J gene BRIP1 are low-penetrance breast cancer susceptibility alleles. Nat Genet. 2006;38(11):1239–41.PubMedCrossRefGoogle Scholar
  49. 49.
    Wong MW, Nordfors C, Mossman D, Pecenpetelovska G, Avery-Kiejda KA, Talseth-Palmer B, et al. BRIP1, PALB2, and RAD51C mutation analysis reveals their relative importance as genetic susceptibility factors for breast cancer. Breast Cancer Res Treat. 2011;127(3):853–9.PubMedCrossRefGoogle Scholar
  50. 50.
    Melhem-Bertrandt A, Bojadzieva J, Ready KJ, Obeid E, Liu DD, Gutierrez-Barrera AM, et al. Early onset HER2-positive breast cancer is associated with germline TP53 mutations. Cancer. 2012;118(4):908–13.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Honrado E, Benitez J, Palacios J. The molecular pathology of hereditary breast cancer: genetic testing and therapeutic implications. Mod Pathol. 2005;18(10):1305–20.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    NCCN Guidelines version 1.2018. BRCA-related breast and/or ovarian cancer syndrome. http://www.nccn.org/professionals/physician_gls/pdf/
  53. 53.
    Tyrer J, Duffy SW, Cuzick J. A breast cancer prediction model incorporating familial and personal risk factors. Stat Med. 2004;23(7):1111–30.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Antoniou AC, Cunningham AP, Peto J, Evans DG, Lalloo F, Narod SA, et al. The BOADICEA model of genetic susceptibility to breast and ovarian cancers: updates and extensions. Br J Cancer. 2008;98(8):1457–66.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Powell M, Jamshidian F, Cheyne K, Nititham J, Prebil LA, Ereman R. Assessing breast cancer risk models in Marin County, a population with high rates of delayed childbirth. Clin Breast Cancer. 2014;14(3):212–20.e1.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Armstrong J, Toscano M, Kotchko N, Friedman S, Schwartz MD, Virgo KS, et al. Utilization and outcomes of BRCA genetic testing and counseling in a National Commercially Insured Population: The ABOUT Study. JAMA Oncol. 2015;1(9):1251–60.PubMedCrossRefGoogle Scholar
  57. 57.
    Domagala P, Hybiak J, Rys J, Byrski T, Cybulski C, Lubinski J. Pathological complete response after cisplatin neoadjuvant therapy is associated with the downregulation of DNA repair genes in BRCA1-associated triple-negative breast cancers. Oncotarget. 2016;7(42):68662–73.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Byrski T, Huzarski T, Dent R, Gronwald J, Zuziak D, Cybulski C, et al. Response to neoadjuvant therapy with cisplatin in BRCA1-positive breast cancer patients. Breast Cancer Res Treat. 2009;115(2):359–63.PubMedCrossRefGoogle Scholar
  59. 59.
    Arun B, Bayraktar S, Liu DD, Gutierrez Barrera AM, Atchley D, Pusztai L, et al. Response to neoadjuvant systemic therapy for breast cancer in BRCA mutation carriers and noncarriers: a single-institution experience. J ClinOncol. 2011;29(28):3739–46.CrossRefGoogle Scholar
  60. 60.
    Tutt A, Paul E, Kilburn L, Gilett C, Pinder S, Abraham J, et al. The TNT trial: a randomized phase III trial of carboplatin compared with docetaxel for patients with metastatic or recurrent locally advanced triple negative or BRCA 1/2 breast cancer. Cancer Res. 2014;75:S3–01.Google Scholar
  61. 61.
    Robson M, Goessl C, Domchek S. Olaparib for metastatic germline BRCA-mutated breast cancer. N Engl J Med. 2017;377(18):1792–3.PubMedCrossRefGoogle Scholar
  62. 62.
    Ame JC, Spenlehauer C, de Murcia G. The PARP superfamily. BioEssays. 2004;26(8):882–93.PubMedCrossRefGoogle Scholar
  63. 63.
    Gronwald J, Robidoux A, Kim-Sing C, Tung N, Lynch HT, Foulkes WD, et al. Duration of tamoxifen use and the risk of contralateral breast cancer in BRCA1 and BRCA2 mutation carriers. Breast Cancer Res Treat. 2014;146(2):421–7.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Narod SA, Brunet JS, Ghadirian P, Robson M, Heimdal K, Neuhausen SL, et al. Tamoxifen and risk of contralateral breast cancer in BRCA1 and BRCA2 mutation carriers: a case-control study. Hereditary Breast Cancer Clinical Study Group. Lancet. 2000;356(9245):1876–81.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Metcalfe K, Lynch HT, Ghadirian P, Tung N, Kim-Sing C, Olopade OI, et al. Risk of ipsilateral breast cancer in BRCA1 and BRCA2 mutation carriers. Breast Cancer Res Treat. 2011;127(1):287–96.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Metcalfe K, Lynch HT, Ghadirian P, Tung N, Olivotto I, Warner E, et al. Contralateral breast cancer in BRCA1 and BRCA2 mutation carriers. J ClinOncol. 2004;22(12):2328–35.CrossRefGoogle Scholar
  67. 67.
    Domchek SM, Friebel TM, Singer CF, Evans DG, Lynch HT, Isaacs C, et al. Association of risk-reducing surgery in BRCA1 or BRCA2 mutation carriers with cancer risk and mortality. JAMA. 2010;304(9):967–75.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Le-Petross HT, Whitman GJ, Atchley DP, Yuan Y, Gutierrez-Barrera A, Hortobagyi GN, et al. Effectiveness of alternating mammography and magnetic resonance imaging for screening women with deleterious BRCA mutations at high risk of breast cancer. Cancer. 2011;117(17):3900–7.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Tung N, Domchek SM, Stadler Z, Nathanson KL, Couch F, Garber JE, et al. Counselling framework for moderate-penetrance cancer-susceptibility mutations. Nat Rev ClinOncol. 2016;13(9):581–8.CrossRefGoogle Scholar
  70. 70.
    Ramus SJ, Antoniou AC, Kuchenbaecker KB, Soucy P, Beesley J, Chen X, et al. Ovarian cancer susceptibility alleles and risk of ovarian cancer in BRCA1 and BRCA2 mutation carriers. Hum Mutat. 2012;33(4):690–702.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Brentnall TA. Cancer surveillance of patients from familial pancreatic cancer kindreds. Med Clin North Am. 2000;84(3):707–18.PubMedCrossRefGoogle Scholar
  72. 72.
    Canto MI, Goggins M, Hruban RH, Petersen GM, Giardiello FM, Yeo C, et al. Screening for early pancreatic neoplasia in high-risk individuals: a prospective controlled study. ClinGastroenterolHepatol. 2006;4(6):766–81. quiz 665Google Scholar
  73. 73.
    Kuerer H. Establishing a cancer genetics service. In: Kuerer’s breast surgical oncology. New York: McGraw-Hill Professional, Inc.; 2010.Google Scholar
  74. 74.
    MacDonald DJ, Blazer KR, Weitzel JN. Extending comprehensive cancer center expertise in clinical cancer genetics and genomics to diverse communities: the power of partnership. J Natl Compr Cancer Netw. 2010;8(5):615–24.CrossRefGoogle Scholar
  75. 75.
    Febbraro T, Robison K, Wilbur JS, Laprise J, Bregar A, Lopes V, et al. Adherence patterns to National Comprehensive Cancer Network (NCCN) guidelines for referral to cancer genetic professionals. GynecolOncol. 2015;138(1):109–14.Google Scholar
  76. 76.
    Levy DE, Garber JE, Shields AE. Guidelines for genetic risk assessment of hereditary breast and ovarian cancer: early disagreements and low utilization. J Gen Intern Med. 2009;24(7):822–8.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Biruni Univeristy School of Medicine, Protokol YoluIstanbulTurkey
  2. 2.Department of Breast Medical Oncology and Clinical Cancer Genetics ProgramThe University of Texas MD Anderson Cancer CenterHoustonUSA

Personalised recommendations