A Simple Model of Double Dynamics on Lie Groups

  • Patrizia VitaleEmail author
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 229)


We study the dynamics of the rigid rotator on the group manifold of SU(2) as an instance of dynamics on Lie groups together with a dual model whose carrier space is the Borel group \(SB(2,\mathbb {C})\), the Lie Poisson dual of SU(2). We thus introduce a parent action on the Drinfel’d double of the above mentioned groups, which describes the dynamics of a system with twice as many degrees of freedom as the two starting partners. Through a gauging procedure of its global symmetries both the rigid rotor and the dual model are recovered.


Generalized geometry Double field theory T-duality Poisson-lie symmetry 



P. V. acknowledges support by COST (European Cooperation in Science and Technology) in the framework of COST Action MP1405 QSPACE.


  1. 1.
    C. Klimčík, P. Ševera, Dual non-Abelian duality and the Drinfel’d double. Phys. Lett. B 351(4), 455-462 (1995). [hep-th/9502122]; C. Klimčik, P. Severa, Poisson-Lie T-duality and loop groups of Drinfel’d doubles. Phys. Lett. B 372, 65 (1996). [hep-th/9512040]ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    C. Klimčík, Poisson-Lie T-duality. Nucl. Phys. Proc. Suppl. 46, 116 (1996). [hep-th/9509095]ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    M.A. Lledó, V.C. Varadarajan, SU(2) Poisson-Lie T duality. Lett. Math. Phys. 45, 247 (1998)MathSciNetCrossRefGoogle Scholar
  4. 4.
    N. Hitchin, Generalized Calabi-Yau manifolds. Q. J. Math. 54, 281–308 (2003). [math/0209099]MathSciNetCrossRefGoogle Scholar
  5. 5.
    N. Hitchin, Lectures on generalized geometry. [arXiv:1008.0973 [math.DG]]
  6. 6.
    M. Gualtieri, Generalized Complex Geometry, Ph.D. Thesis, 2004. [math/0703298 [math.DG]]Google Scholar
  7. 7.
    C. Hull, R.A. Reid-Edwards, Non-geometric backgrounds, doubled geometry and generalised T-duality. JHEP 09(2009), 014 (2009)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    C. Hull, B. Zwiebach, Double field theory. JHEP 09, 099 (2009). [arXiv:0904.4664 [hep-th]]; C.M. Hull, B. Zwiebach, The gauge algebra of double field theory and courant brackets. JHEP 2009(09), 090 (2009). [arXiv:0908.1792 [hep-th]]
  9. 9.
    V.G. Drinfel’d, Hamiltonian structures of Lie groups, Lie bialgebras and the geometric meaning of the classical Yang–Baxter equation. Sov. Math. Dokl. 27, (1983) 68–71; V.G. Drinfel’d, Quantum groups. in Proceedings of the International Congress of Mathematicians (Berkeley, Calif., 1986), (American Mathematical Society, Providence, 1987) pp. 798–820Google Scholar
  10. 10.
    M.A. Semenov-Tian-Shansky, Poisson Lie groups, quantum duality principle, and the quantum double. Theor. Math. Phys. 93, 1292 (1992). [Teor. Mat. Fiz. 93N2 (1992) 302]. [hep-th/9304042]Google Scholar
  11. 11.
    V.E. Marotta, F. Pezzella, P. Vitale, Doubling, T-duality and generalized geometry: a simple model. JHEP (2018). [arXiv:1804.00744 [hep-th]]
  12. 12.
    V.E. Marotta, F. Pezzella, P. Vitale, In preparationGoogle Scholar
  13. 13.
    G. Marmo, A. Simoni, A. Stern, Poisson-Lie group symmetries for the isotropic rotor. Int. J. Mod. Phys. A 10, 99 (1995). [hep-th/9310145]ADSCrossRefGoogle Scholar
  14. 14.
    G. Marmo, A. Ibort, A new look at completely integrable systems and double Lie groups. Contemp. Math. 219, 159 (1998)MathSciNetCrossRefGoogle Scholar
  15. 15.
    A.A. Tseytlin, Duality symmetric formulation of string world sheet dynamics. Phys. Lett. B 242, 163 (1990); A.A. Tseytlin, Duality symmetric closed string theory and interacting chiral scalars. Nucl. Phys. B 350, 395 (1991)Google Scholar
  16. 16.
    M.J. Duff, Duality rotations in string theory. Nucl. Phys. B 335, 610 (1990)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    W. Siegel, Superspace duality in low-energy superstrings. Phys. Rev. D 48, 2826 (1993). [hep-th, 9305073]; W. Siegel, Two vierbein formalism for string inspired axionic gravity. Phys. Rev. D 47, 5453 (1993). [hep-th, 9302036]; W. Siegel, Manifest duality in low-energy superstrings, in “Berkeley, Proceedings, Strings, vol. 93, pp. 353–363. [hep-th/9308133]; W. Siegel, Manifest Lorentz invariance sometimes requires nonlinearity. Phys. Rev. D 47(1993), 5453 (1993)Google Scholar
  18. 18.
    K. Sfetsos, Duality-invariant class of two-dimensional field theories. Nucl. Phys. B 561, 316–340 (1999). [hep-th/9904188]ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    I. Calvo, F. Falceto, D. Garcia-Alvarez, Topological Poisson sigma models on Poisson Lie groups. JHEP 0310, 033 (2003). [hep-th/0307178]ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    A. Stern, Hamiltonian approach to Poisson Lie T-duality. Phys. Lett. B 450, 141 (1999). [hep-th/9811256]; A. Stern, T-duality for coset models. Nucl. Phys. B 557, 459 (1999). [hep-th/9903170]ADSCrossRefGoogle Scholar
  21. 21.
    R. Blumenhagen, F. Hassler, D. Lüst, Double field theory on group manifolds. JHEP 1502, 001 (2015). [arXiv:1410.6374 [hep-th]]; R. Blumenhagen, P. du Bosque, F. Hassler, D. Lüst, Generalized metric formulation of double field theory on group manifolds. JHEP 1508, 056 (2015). [arXiv:1502.02428 [hep-th]]; F. Hassler, Poisson-Lie T-duality in double field theory. [arXiv:1707.08624 [hep-th]]
  22. 22.
    H. Bateman, On dissipative systems and related variational principle. Phys. Rev. 38, 815 (1931)ADSCrossRefGoogle Scholar
  23. 23.
    I. Bakas, D. Lüst, 3-cocycles, non-associative star-products and the magnetic paradigm of R-flux string vacua. JHEP 1401, 171 (2014). [arXiv:1309.3172 [hep-th]]ADSCrossRefGoogle Scholar
  24. 24.
    G.V. Kupriyanov, R.J. Szabo, Symplectic realization of electric charge in fields of monopole distributions. Phys. Rev. D 98(4), 045005 (2018). [arXiv:1803.00405 [hep-th]]
  25. 25.
    R.J. Szabo, Quantization of magnetic poisson structures. arXiv:1903.02845 [hep-th]
  26. 26.
    R.J. Szabo, Quantum field theory on noncommutative spaces. Phys. Rept. 378, 207 (2003). [hep-th/0109162]ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    G. Marmo, P. Vitale, A. Zampini, Noncommutative differential calculus for Moyal subalgebras. J. Geom. Phys. 56, 611 (2006). [hep-th/0411223]; Derivation based differential calculi for noncommutative algebras deforming a class of three dimensional spaces. J. Geom. Phys. 136, 104 (2019). [arXiv:1805.06300 [math.QA]]
  28. 28.
    P. Martinetti, P. Vitale, J.C. Wallet, Noncommutative gauge theories on \(\mathbb{R}^2_\theta \) as matrix models. JHEP 1309, 051 (2013). [arXiv:1303.7185 [hep-th]]ADSCrossRefGoogle Scholar
  29. 29.
    H. Grosse, R. Wulkenhaar, Renormalization of \(\phi ^4\) theory on noncommutative \({\mathbb{R}}^2\) in the matrix base. JHEP 0312, 019 (2003). [hep-th/0307017]; Renormalization of \(\phi ^4\) theory on noncommutative \({\mathbb{R}}^4\) to all orders. Lett. Math. Phys. 71, 13 (2005). [hep-th/0403232]Google Scholar
  30. 30.
    R. Gurau, J. Magnen, V. Rivasseau, A. Tanasa, A translation-invariant renormalizable non-commutative scalar model. Commun. Math. Phys. 287, 275 (2009). [arXiv:0802.0791 [math-ph]]. A. Tanasa, P. Vitale, Curing the UV/IR mixing for field theories with translation-invariant \(\star \)products. Phys. Rev. D 81, 065008 (2010). [arXiv:0912.0200 [hep-th]]ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    M. de Cesare, M. Sakellariadou, P. Vitale, Noncommutative gravity with self-dual variables. Class. Quant. Grav. 35(21), 215009 (2018). [arXiv:1806.04666 [gr-qc]]
  32. 32.
    P. Aschieri, L. Castellani, Noncommutative D=4 gravity coupled to fermions. JHEP 0906, 086 (2009). [arXiv:0902.3817 [hep-th]]ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    G. Marmo, E.J. Saletan, A. Simoni, B. Vitale, Dynamical Systems: A Differential Geometric Approach to Symmetry and Reduction (John Wiley and Sons Inc., 1985)Google Scholar
  34. 34.
    A.Y. Alekseev, A.Z. Malkin, Symplectic structures associated to Lie-Poisson groups. Commun. Math. Phys. 162, 147 (1994). hep-th/9303038ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    O. Babelon, D. Bernard, Phys. Lett. B 260, 81 (1991); Commun. Math. Phys. 149, 279 (1992); Int. J. Mod. Phys. A 8 , 507 (1993)Google Scholar
  36. 36.
    Z.-J. Liu, P. Xu, A. Weinstein, Manin triples for Lie bialgebroids. J. Differ. Geom. 45, 547–574 (1997). dg-ga/9508013v3MathSciNetCrossRefGoogle Scholar
  37. 37.
    L. Freidel, F.J. Rudolph, D. Svoboda, Generalised kinematics for double field theory. JHEP 11, 175 (2017). [arXiv:1706.07089 [hep-th]]ADSMathSciNetCrossRefGoogle Scholar
  38. 38.
    E.K. Sklyanin, Some algebraic structures connected with the Yang-Baxter equation. Funct. Analy. Appl. 16, 263 (1982)MathSciNetCrossRefGoogle Scholar
  39. 39.
    S.G. Rajeev, Non Abelian bosonization without Wess-Zumino terms. 1. New current algebra. Phys. Lett. B 217; S.G. Rajeev, Non Abelian bosonization without Wess-Zumino terms. 2. (1988). UR-1088Google Scholar
  40. 40.
    S.G. Rajeev, G. Sparano, P. Vitale, Alternative canonical formalism for the Wess-Zumino-Witten model. Int. J. Mod. Phys. A 9, 5469–5488 (1994). [hep-th/9312178]ADSMathSciNetCrossRefGoogle Scholar
  41. 41.
    S.G. Rajeev, A. Stern, P. Vitale, Integrability of the Wess-Zumino-Witten model as a non-ultralocal theory. Phys. Lett. B 388, 769–775 (1996). [hep-th/9602149]ADSMathSciNetCrossRefGoogle Scholar
  42. 42.
    F. Delduc, M. Magro, B. Vicedo, Integrable double deformation of the principal chiral model. Nucl. Phys. B 891, 312-321 (2105). [arXiv:1410.8066 [hep-th]]ADSMathSciNetCrossRefGoogle Scholar
  43. 43.
    R.A. Reid-Edwards, Bi-algebras, generalized geometry and T-duality (2010). [arXiv:1001.2479 [hep-th]]
  44. 44.
    N.B. Copland, A double sigma model for double field theory. JHEP 04, 575 (2012) ; N.B. Copland, Connecting T-duality invariant theories, Nucl. Phys. B 854, 044 (2012)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Dipartimento di Fisica “E. Pancini”Università di Napoli Federico II and INFN-Sezione di Napoli, Complesso Universitario di Monte S. Angelo Edificio 6NapoliItaly

Personalised recommendations