Synthetic Seed Technology in Forest Trees: A Promising Technology for Conservation and Germplasm Exchange

  • Suprabuddha Kundu
  • Monoj Sutradhar
  • Umme Salma


Forest trees are less domesticated in comparison with the agricultural plants, and even the seed produced during breeding programs is genetically diverse. The increasing global need for food and fibre results in new demands for the efficiency of wood production. The exploitation of forest area emphasizes the importance of the immediate development of conservation strategies for forest tree species. Synthetic seed technology is an advanced and highly increasing forte of plant biotechnological research. For the last two decades, intensive research efforts have been made on synthetic seed production in a number of plant species. The technique involves the use of any meristematic tissue like shoot tip, nodal segment or somatic embryo for large-scale propagation and germplasm exchange between laboratories, thus lowering the dependence on micropropagation and minimizing its relevant expenditures. In most of forest species, seed propagation has not been successful because of heterozygosity of seeds, minute seed size, presence of reduced endosperm and low germination rate. Many species have desiccation-sensitive intermediate or recalcitrant seeds and can be stored for only a few weeks or months. Under these circumstances, increasing interest has been shown recently to use encapsulation technology for propagation and conservation. The technology also provides its importance in ex vitro conservation as the encapsulation protects the plant sample from the unfavourable effects of toxic cryoprotectants and post-storage damages. After an introduction on the main procedures for synseed preparation, this chapter provides information on the protocols that have been developed for the encapsulation of various explants from forest tree species.


Calcium chloride Conservation Encapsulation Forest tress Sodium alginate Synthetic seed 



Abscisic acid




Calcium chloride


Indole-3-butyric acid


Quorin and LePoivre medium


Murashige and Skoog medium


α-Naphthaleneacetic acid


Nodal segment


Plant growth regulator


Sodium alginate


Somatic embryo


Shoot tip


Woody Plant Medium


  1. Aitken-Christie J, Kozai T, Smith MAL (1995) Glossary. In: Aitken-Christie J, Kozai T, Smith MAL (eds) Automation and environmental control in plant tissue culture. Kluwer, Dordrecht, pp ix–xiiCrossRefGoogle Scholar
  2. Ammirato PV (1983) In: Evans DA, Sharp WR, Ammirato PV, Yamada Y (eds) In handbook of plant cell culture, vol vol 1. Macmillan, New York, pp 82–123Google Scholar
  3. Antonietta GM, Micheli M, Pulcini L, Standardi A (2007) Perspective of the encapsulation technology in the nursery activity of Citrus. Caryologia 60:192–195CrossRefGoogle Scholar
  4. Aquea F, Poupin MJ, Matus JT, Gebauer M, Medina C, Arce-Johnson P (2008) Synthetic seed production from somatic embryos of Pinus radiata. Biotechnol Lett 30(10):1847–1852PubMedCrossRefGoogle Scholar
  5. Asmah HN, Hasnida HN, Zaimah NN, Noraliza A, Salmi NN (2011) Synthetic seed technology for encapsulation and regrowth of in vitro-derived Acacia hybrid shoot and axillary buds. Afr J Biotechnol 10(40):7820–7824CrossRefGoogle Scholar
  6. Attree SM, Fowke LC (1993) Embryogeny of gymnosperms: advances in synthetic seed technology of conifers. Plant Cell Tissue Organ Cult 35(1):1–35CrossRefGoogle Scholar
  7. Attree SM, Pomeroy MK, Fowke LC (1995) Development of white spruce (Picea glauca (Moench.) Voss) somatic embryos during culture with abscisic acid and osmoticum, and their tolerance to drying and frozen storage. J Exp Bot 46(4):433–439CrossRefGoogle Scholar
  8. Ballester A, Janeiro LV, Vieitez AM (1997) Storage of shoot cultures and alginate encapsulation of shoot tips of Camellia japonica and C. reticulata Lindley. Sci Horticult 71:67–78CrossRefGoogle Scholar
  9. Bapat VA, Mhatre M (2005) Bioencapsulation of somatic embryos in woody plants. In: Jain SM, Gupta PK (eds) Protocol for somatic embryogenesis in woody plants. Springer, Dordrecht, pp 539–552CrossRefGoogle Scholar
  10. Bapat VA, Rao PS (1988) Sandalwood plantlets from ‘synthetic seeds. Plant Cell Rep 7(6):434–436PubMedGoogle Scholar
  11. Bapat VA, Rao PS (1992) Plantlet regeneration from encapsulated and non-encapsulated desiccated somatic embryos of a forest tree: sandalwood (Santalum album L.). J Plant Biochem Biot 1(2):109–113CrossRefGoogle Scholar
  12. Bapat VA, Rao PS (1993) In vivo growth of encapsulated axillary buds of mulberry (Morus indica L.). Plant Cell Tissue Organ Cult 2:69–70Google Scholar
  13. Cartes P, Castellanos H, Ríos D, Sáez K, Spierccolli S, Sánchez M (2009) Encapsulated somatic embryos and zygotic embryos for obtaining artificial seeds of rauli-beech (Nothofagus alpina (Poepp. & Endl.) oerst.). Chil J Agr Res 69(1):112–118CrossRefGoogle Scholar
  14. Castellanos H, Sánchez-Olate M, Ríos YD (2004) Embriogenesis somatic recurrente en rauli (Nothofagus alpine (Poepp. & Endl.) Oerst). In: Segundo Congreso Chileno de Ciencias Forestales,Valdivia, Chile. 10–12 de noviembre. Universidad Austral de Chile, Valdivia, p 36Google Scholar
  15. Chand S, Singh AK (2004) Plant regeneration from encapsulated nodal segments of Dalbergia sissoo Roxb., a timber-yielding leguminous tree species. J Plant Physiol 161(2):237PubMedCrossRefPubMedCentralGoogle Scholar
  16. Cheruvathur MK, Najeeb N, Thomas TD (2013) In vitro propagation and conservation of Indian sarsaparilla, Hemidesmus indicus LR Br. through somatic embryogenesis and synthetic seed production. Acta Physiol Plant 35(3):771–779CrossRefGoogle Scholar
  17. Choi YE, Kim HS, Soh WY, Yang DC (1997) Developmental and structural aspects of somatic embryos formed on medium containing 2, 3, 5-triiodobenzoic acid. Plant Cell Rep 16(11):738–744PubMedCrossRefPubMedCentralGoogle Scholar
  18. Compton ME, Benton CM, Gray DJ, Songstad DD (1992) Plant recovery from maize somatic embryos subjected to controlled relative humidity dehydration. In Vitro Cell Dev Biol 28:197–201CrossRefGoogle Scholar
  19. Crouch ML, Sussex IM (1981) Development and storage-protein synthesis in Brassica napus L. embryos in vivo and in vitro. Planta 153(1):64–74PubMedCrossRefPubMedCentralGoogle Scholar
  20. Danso KE, Ford-Lloyd BV (2003) Encapsulation of nodal cuttings and shoot tips for storage and exchange of cassava germplasm. Plant Cell Rep 21:718–725PubMedPubMedCentralGoogle Scholar
  21. Datta KB, Kanjilal B, De Sarker D (2001) Artificial seed technology: development of a protocol in Geodorum densiflorum (Lam) Schltr.- an endangered orchid. Curr Sci 76:1142–1145Google Scholar
  22. Daud N, Taha RM, Hasbullah NA (2008) Artificial seed production from encapsulated micro shoots of Saintpaulia ionantha Wendl. (African Violet). J Appl Sci 8:4662–4667CrossRefGoogle Scholar
  23. Englemann F, Engles J, Dullo E (2003) The development of complementary strategies for the conservation of plant genetic resources using in vitro and cryopreservation methods. In: Chaudhury R, Pandey R, Malik SK, Bhag M (eds) In vitro conservation and cryopreservation of tropical fruit species. IPGRI Office forSouth Asia and NBPGR, New Delhi, pp 37–48Google Scholar
  24. Faisal M, Ahmad N, Anis M (2006) In vitro plant regeneration from alginate-encapsulated microcuttings of Rauvolfia tetraphylla L. Am Eur J Agric Environ Sci 1:1–6Google Scholar
  25. Fowke L, Attree S (1996) Conifer somatic embryogenesis: studies of embryo development and the cell biology of conifer cells and protoplasts. Plant Tiss Cult Biotechnol 2:124–130Google Scholar
  26. Gantait S, Kundu S (2017) Does synthetic seed storage at higher temperature reduce reserpine content of Rauvolfia serpentina (L.) Benth. ex Kurz.? Rendiconti Lincei 28(4):679–686CrossRefGoogle Scholar
  27. Gantait S, Kundu S, Ali MN, Sahu NC (2015a) Synthetic seed production of medicinal plants: a review on influence of explants, encapsulation agent and matrix. Acta Physiol Plant 37(5):98CrossRefGoogle Scholar
  28. Gantait S, Kundu S, Ali N (2015b) Influence of encapsulating agent and matrix levels on synseed production of Bacopa monnieri (L.) Pennell. Med Plants Int J Phytomed Relat Ind 7(3):182–187CrossRefGoogle Scholar
  29. Gantait S, Kundu S, Yeasmin L, Ali MN (2017) Impact of differential levels of sodium alginate, calcium chloride and basal media on germination frequency of genetically true artificial seeds of Rauvolfia serpentina (L.) Benth. ex Kurz. JARMAP 4:75–81Google Scholar
  30. Gray DJ (1987) Quiescence in monocotyledonous and dicotyledonous somatic embryos induced by dehydration. Hort Sci 22:810–814Google Scholar
  31. Guerra MP, Dal Vesco LL, Ducroquet JP, Nodari RO, Reis MS (2001) Somatic embryogenesis in Goiabeira serrana: genotype response, auxinic shock and synthetic seeds. Rev Bras Fisiol Veg 13(2):117–128CrossRefGoogle Scholar
  32. Gupta S, Mandal BB (2003) In vitro methods for PGR conservation: principles and prospects. In: Chaudhury R, Pandey R, Malik SK, Bhag M (eds) In vitro conservation and cryopreservation of tropical fruit species. IPGRI Office for South Asia and NBPGR, New Delhi, pp 71–80Google Scholar
  33. Gupta PK, Shaw D, Durzan DJ (1987) Loblolly pine: micropropagation, somatic embryogenesis and encapsulation. In cell and tissue culture in forestry. Springer, Dordrecht, pp 101–108Google Scholar
  34. Hung CD, Trueman SJ (2012) Alginate encapsulation of shoot tips and nodal segments for short-term storage and distribution of the eucalypt Corymbia torelliana × C. citriodora. Acta Physiol Plant 34(1):117–128CrossRefGoogle Scholar
  35. Inocente GC, Dal Vesco LL, Steinmacher D, Torres AC, Guerra MP (2007) Improvements in somatic embryogenesis protocol in Feijoa (Acca sellowiana (Berg) Burret): induction, conversion and synthetic seeds. Sci Horticult 111(3):228–234CrossRefGoogle Scholar
  36. Ipekci Z, Gozukirmizi N (2003) Direct somatic embryogenesis and synthetic seed production from Paulownia elongata. Plant Cell Rep 22(1):16–24PubMedCrossRefGoogle Scholar
  37. Jain SM, Gupta PK, Netwon RJ (1995) Somatic embryogenesis in woody plants. Kluwer, DordrechtCrossRefGoogle Scholar
  38. Janeiro LV, Ballester A, Vieitez AM (1997) In vitro response of encapsulated somatic embryos of camellia. Plant Cell Tissue Organ Cult 51(2):119–125CrossRefGoogle Scholar
  39. Khor E, Ng WF, Loh CS (1998) Two-coat systems for encapsulation of Spathoglottis plicata (Orchidaceae) seeds and protocorms. Biotechnol Bioeng 59:635–639PubMedCrossRefPubMedCentralGoogle Scholar
  40. Kinoshita I, Saito A (1990) Propagation of Japanese White Birch by encapsulated axillary buds. J Jpn For Soc 72:166–170Google Scholar
  41. Kundu S, Salma U, Ali MN, Mandal N (2018) Conservation, ex vitro direct regeneration, and genetic uniformity assessment of alginate-encapsulated nodal cuttings of Sphagneticola calendulacea (L.) Pruski. Acta Physiol Plant 40(3):53CrossRefGoogle Scholar
  42. Lambardi M, Benelli C, Ozudogru EA, Ozden-Tokatli Y (2006) Synthetic seed technology in ornamental plants. Floricult Ornam Plant Biotechnol 2:347–354Google Scholar
  43. Lee KS, Soh WY (1994) Effect of abscisic acid on the number of somatic embryo cotyledons in tissue cultures of Aralia cordata Thunb. Korean J Plant Tissue Cult 21:287–291Google Scholar
  44. Liu CM, Xu ZH, Chua NH (1993) Auxin polar transport is essential for the establishment of bilateral symmetry during early plant embryogenesis. Plant Cell 5(6):621–630PubMedPubMedCentralCrossRefGoogle Scholar
  45. Lloyd G, McCrown B (1980) Commercially feasible micropropagation of mountain laurel, Kalmia latifolia, by use of shoot-tip culture. Proc Int Plant Prop Soc 30:421–427Google Scholar
  46. Mandal J, Pattnaik S, Chand PK (2000) Alginate encapsulation of axillary buds of Ocimum americanum L. (hoary basil), O. basilicum L. (sweet basil), O. gratissimum L.(shrubby basil), and O. sanctum (sacred basil). In Vitro Cell Dev Biol Plant 36:287–292CrossRefGoogle Scholar
  47. Mariani TS, Latif S, Ginting G, Miyake H (2008) Somatic embryogenesis of oil palm (Elaeis guineensis Jacq.) for synthetic seed productionGoogle Scholar
  48. Maruyama E, Kinoshita I, Ishii K, Ohba K, Saito A (1997) Germplasm conservation of the tropical forest trees, Cedrela odorata L., Guazuma crinita Mart., Jacaranda mimosaefolia D. Don., by shoot tip encapsulation in calcium-alginate and storage at 12–25° C. Plant Cell Rep 16(6):393–396PubMedGoogle Scholar
  49. Maruyama E, Hosoi Y, Ishii K (2003) Somatic embryo culture for propagation, artificial seed production, and conservation of sawara cypress (Chamaecyparis pisifera Sieb. et Zucc.). J For Res 8(1):0001–0008CrossRefGoogle Scholar
  50. Micheli M, Hafiz IA, Standardi A (2007) Encapsulation of in vitro-derived explants of olive (Olea europaea L. cv. Moraiolo): II. Effects of storage on capsule and derived shoots performance. Sci Horticult 113(3):286–292CrossRefGoogle Scholar
  51. Muralidharan EM, Mascarenhos AF (1995) Somatic embryogenesis Eucalyptus. In: Mohan SJ, Pramod GK, Ronald JN (eds) Somatic embryogenesis, Woody plants, vol 2. Kluwer, The Netherlands, pp 23–39CrossRefGoogle Scholar
  52. Murashige T (1977) Plant cell and organ cultures as horticultural practices. Acta Hortic 78:17–30CrossRefGoogle Scholar
  53. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:473–497CrossRefGoogle Scholar
  54. Murthy KS, Reddy MC (2014) Micropropagation and conservation strategies of the potentially medicinal and economically important tropical deciduous tree-Drypetes roxburghii (Wall.) Hurursawa. J Med Plants Res 8(24):870–880CrossRefGoogle Scholar
  55. Murthy HN, Dandin VS, Joseph KS, Park SY, Paek KY (2018) Plant cell and organ culture as an alternative for the production of anticancer compounds. In: Anticancer plants: natural products and biotechnological implements. Springer, Singapore, pp 429–464CrossRefGoogle Scholar
  56. Nagesh KS, Shanthamma C, Bhagyalakshmi N (2009) Role of polarity in de novo shoot bud initiation from stem disc explants of Curculigo orchioides Gaertn. and its encapsulation and storability. Acta Physiol Plant 1:699–704CrossRefGoogle Scholar
  57. Naik SK, Chand PK (2006) Nutrient-alginate encapsulation of in vitro nodal segments of pomegranate (Punica granatum L.) for germplasm distribution and exchange. Sci Horticult 108:247–252CrossRefGoogle Scholar
  58. Norstog K (1965) Development of cultured barley embryos i. growth of 0.1–0.4-mm embryos. Am J Bot 52:538–546Google Scholar
  59. Nunes ED, Benson EE, Oltramari AC, Araujo PS, Moser JR, Viana AM (2003) In vitro conservation of Cedrela fissilis Vellozo (Meliaceae), a native tree of the Brazilian Atlantic Forest. Biodivers Conserv 12(4):837–848CrossRefGoogle Scholar
  60. Onay A, Jeffree CE, Yeoman MM (1996) Plant regeneration from encapsulated embryoids and an embryogenic mass of pistachio, Pistacia vera L. Plant Cell Rep 15(9):723–726PubMedCrossRefPubMedCentralGoogle Scholar
  61. Palanyandy SR, Gantait S, Suranthran P, Sinniah UR, Subramaniam S, Aziz MA, Sarifa SRSA, Roowi SH (2015) Storage of encapsulated oil palm polyembryoids: influence of temperature and duration. In Vitro Cell Dev Biol Plant 5:118–124CrossRefGoogle Scholar
  62. Patel AV, Pusch I, Mix-Wagner G, Vorlop KD (2000) A novel encapsulation technique for the production of artificial seeds. Plant Cell Rep 19:868–874PubMedCrossRefPubMedCentralGoogle Scholar
  63. Piccioni E, Standardi A (1995) Encapsulation of micropropagated buds of six woody species. Plant Cell Tissue Organ Cult 42(3):221–226CrossRefGoogle Scholar
  64. Pintos B, Bueno MA, Cuenca B, Manzanera JA (2008) Synthetic seed production from encapsulated somatic embryos of cork oak (Quercus suber L.) and automated growth monitoring. Plant Cell Tissue Organ Cult 95:217–225CrossRefGoogle Scholar
  65. Prewein C, Wilhelm E (2003) Plant regeneration from encapsulated somatic embryos of pedunculate oak (Quercus robur L.). In Vitro Cell Dev Biol Plant 39:613–617CrossRefGoogle Scholar
  66. Quoirin M, LePoivre P (1977) Study circles adapted to in vitro cultures of Prunus. Acta Hortic 78:437–442CrossRefGoogle Scholar
  67. Reddy CS, Saranya KR, Pasha SV, Satish KV, Jha CS, Diwakar PG, Dadhwal VK, Rao PV, Murthy YK (2018) Assessment and monitoring of deforestation and forest fragmentation in South Asia since the 1930s. Glob Planet Chang 161:132–148CrossRefGoogle Scholar
  68. Redenbaugh K (1990) Application of artificial seed to tropical crops. Hort Sci 25(3):251–255CrossRefGoogle Scholar
  69. Redenbaugh K, Slade D, Viss P, Fujii JA (1987) Encapsulation of somatic embryos in synthetic seed coats. Hort Sci 22:803–809Google Scholar
  70. Redenbaugh K, Fujii JA, Slade D (1988) Encapsulated plant embryos. In: Mizrahi A (ed) Biotechnology in agriculture- advances in biotechnological processes, vol 19. Alan R LissInc, New York, NY, pp 225–248Google Scholar
  71. Redenbaugh K, Fujii JA, Slade D (1993) Hydrated coating for synthetic seeds. In: Redenbaugh K (ed) Synseeds. CRC, Boca Raton, pp 35–46Google Scholar
  72. Saiprasad GVS (2001) Artificial seeds and their applications. Resonance 6(5):39–47CrossRefGoogle Scholar
  73. Sharma S, Shahzad A, Mahmood S, Saeed T (2015) High-frequency clonal propagation, encapsulation of nodal segments for short-term storage and germplasm exchange of Ficus carica L. Trees 29(2):345–353CrossRefGoogle Scholar
  74. Singh AK, Chand S (2010) Plant regeneration from alginate-encapsulated somatic embryos of Dalbergia sissoo RoxbGoogle Scholar
  75. Singh KK, Gurung B (2011) Regeneration of plants from alginate-encapsulated shoots of Rhododendron dalhousiae Hook. F. J Appl Nat Sci 3(1):29–33CrossRefGoogle Scholar
  76. Singh MP, Bhojvaid PP, de Jong W, Ashraf J, Reddy SR (2017) Forest transition and socio-economic development in India and their implications for forest transition theory. Forest Policy Econ 76:65–71CrossRefGoogle Scholar
  77. Sloan S, Sayer JA (2015) Forest resources assessment of 2015 shows positive global trends but forest loss and degradation persist in poor tropical countries. Forest Ecol Manag 352:134–145CrossRefGoogle Scholar
  78. Sparg SG, Jones NB, Van Staden J, Bornman CH (2002) Artificial seed from Pinus patula somatic embryos. S Afr J Bot 68(2):234–238CrossRefGoogle Scholar
  79. Standardi A, Piccioni E (1998) Recent perspectives on synthetic seed technology using non embryogenic in vitro-derived explants. Int J Plant Sci 159:968–978Google Scholar
  80. Sunilkumar KK, Sudhakara K, Vijaykumar NK (2000) An attempt to improve storage life of Hopea parviflora seeds through synthetic seed production. Seed Res 28:126–130Google Scholar
  81. Tapia R, Castillo R, Nieves N, Blanco MA, González J, Sánchez M, Rodríguez Y (1999) Inducción, maduración y encapsulación de embriones somáticos de caña de azúcar (Saccharum sp.) var CP52-43. Biotecnología Aplicada 16(1):20–23Google Scholar
  82. Tsvetkov I, Hausman JF (2005) In vitro regeneration from alginate-encapsulated microcuttings of Quercus sp. Sci Horticult 103(4):503–507CrossRefGoogle Scholar
  83. Tsvetkov I, Jouve L, Hausman JF (2006) Effect of alginate matrix composition on regrowth of in vitro-derived encapsulated apical microcuttings of hybrid aspen. Biol Plant 50(4):722–724CrossRefGoogle Scholar
  84. Ummi KH, Dayana AD, Norahimah AR, Natrisya Nur AR, Firdaus A (2011) Effects of different storage duration on encapsulated Parkia speciosa zygotic embryo germination. Empowering Sci Technol Innov Towards Better Tomorrow 120:758–763Google Scholar
  85. Utomo HS, Wenefrida I, Meche MM, Nash JL (2008) Synthetic seed as a potential direct delivery system of mass produced somatic embryos in the coastal marsh plant smooth cordgrass (Spartina alterniflora). Plant Cell Tissue Organ Cult 92(3):281–291CrossRefGoogle Scholar
  86. Varshney A, Anis M (2014) Synseed conception for short-term storage, germplasm exchange and potentialities of regeneration genetically stable plantlets of desert date tree (Balanites aegyptiaca Del.). Agrofor Syst 88(2):321–329CrossRefGoogle Scholar
  87. Wilhelm E, Endemann M, Hristoforoglu K (1999) Somatic embryogenesis in oak (Quercus robur L.) and production of artificial seeds. In: Espinel S, Ritter E (eds) Proceedings of the application of biotechnology to forest genetics. Biofor 99, Vitoria(Spain), pp 213–225Google Scholar
  88. Williams CG, Savolainen O (1996) Inbreeding depression in conifers: implications for using selfing as a breeding strategy. For Sci 42:102–117Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Agricultural Biotechnology, Faculty of AgricultureBidhan Chandra Krishi ViswavidyalayaMohanpur, NadiaIndia

Personalised recommendations