Safety, Nutrition and Functionality of the Traditional Foods

  • Abul Hossain
  • Md. Jiaur Rahman
Part of the Food Engineering Series book series (FSES)


Traditional foods are made from traditional raw materials using traditional processing techniques and have a long history of supporting good health. Traditional foods are simply prepared from fruits, vegetables, meat, fish, milk, eggs, nuts, legumes, and seeds. Moreover, traditional foods are indigenous in nature, unique from other similar foods from the same groups, and not usually processed or packaged as modern products. According to the European Commission (EU, 2006), “traditional” related to foods: “Traditional means proven usage in the community market for a time period showing transmission between generations; this time period should be the one generally ascribed as one human generation, at least 25 years”. Furthermore, Italian Ministry of Agriculture defines the traditional foods as “Agrifood products whose methods of processing, storage and ripening are consolidated with time according to uniform and constant local use” (Ministero Agricoltura, 1999). Therefore, traditional foods are the part of a set of traditions, which are generally free from chemicals, additives, and artificial preservatives compared to modern foods.


Traditional foods Foodborne pathogens Food safety Food hygiene Sanitation Functionality Nutrition Bioactive compounds Health benefits 


  1. Al-Haddad, H. S. K. (2003). Survival of salmonellae in bio-yoghurt. International Journal of Dairy Technology, 56, 199–202.CrossRefGoogle Scholar
  2. Barceloux, D. G. (2009). Cinnamon (Cinnamomum species). Disease-a-Month, 55, 327–335.PubMedCrossRefGoogle Scholar
  3. Bordeleau, S., Asselin, H., Mazerolle, J. M., Imbeau, L. (2016). “Is it still safe to eat traditional food?” Addressing traditional food safety concerns in aboriginal communities. Science of the Total Environment, 565, 529–538.PubMedCrossRefPubMedCentralGoogle Scholar
  4. Cagri-Mehmetoglu, A. (2018). Food safety challenges associated with traditional foods of Turkey. Food Science and Technology, 38, 1–12.CrossRefGoogle Scholar
  5. Cheng, H. (2010). Volatile flavor compounds in yogurt: A review. Critical Reviews in Food Science and Nutrition, 50, 938–950.PubMedCrossRefGoogle Scholar
  6. Choi, I. U., Youn, Y. N., Yu, Y. M., Choi, M. H., & Lee, Y. H. (2007). Comparative evaluation of washing methods of Chinese cabbages for eliminating the parasite eggs in the preparing Kimchi. Journal of Food Hygiene and Safety, 22, 192–198.Google Scholar
  7. Devarajan, A., & Mohanmarugaraja, M. K. (2017). A comprehensive review on rasam: a south Indian traditional functional food. Pharmacognosy Reviews, 11, 73–82.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Egounlety, M., & Aworh, O. C. (2003). Effect of soaking, dehulling, cooking and fermentation with Rhizopus oligosporus on the oligosaccharides, trypsin inhibitor, phytic acid and tannins of soybean (Glycine max Merr.), cowpea (Vigna unguiculata L. Walp) and groundbean (Macrotyloma geocarpa Harms). Journal of Food Engineering, 56, 249–254.CrossRefGoogle Scholar
  9. Elmali, M., Ulukanli, Z., Tuzcu, M., Yaman, H., & Cavli, P. (2005). Microbiological quality of beef doner kebabs in Turkey. Archiv fur Lebensmittelhygiene, 56, 32–34.Google Scholar
  10. El-Ziney, M. G., & Al-Turki, A. I. (2007). Microbiological quality and safety assessment of camel milk (Camelus dromedaries) in Saudi Arabia (Qassim region). Applied Ecology and Environmental Research, 5, 115–122.CrossRefGoogle Scholar
  11. EU. (2006). Council Regulation (EC) No 509/2006 of 20 March 2006 on agricultural products and foodstuffs as traditional specialities guaranteed. Official Journal of the European Union L, 93, 1.Google Scholar
  12. European Economic Commission (EEC). (1997). Commission Decision 97/513/EC of 30 July 1997 concerning certain protective measures with regard to certain fishery products originating in Bangladesh. Official Journal of the European Communities, 214, 6–8.Google Scholar
  13. Finnegan, R. A., Morris, M. P., & Djerassi, C. (1961). Naturally occurring oxygen heterocyclics X. Journal of Organic Chemistry, 26, 1180–1184.CrossRefGoogle Scholar
  14. Flint-Hamilton, K. B. (1999). Legumes in ancient Greece and Rome: Food, medicine or poison? Hesperia, 68, 371–385.CrossRefGoogle Scholar
  15. Hassal, C. H., Reyle, K., & Feng, P. (1954). Hypoglycin A, B: Biologically active polypeptides from Blighia sapida. Nature, 173, 356–357.CrossRefGoogle Scholar
  16. He, S., Mao, X., Liu, P., Lin, H., Du, Z., Lv, N., … Qiu, C. (2013). Research into the functional components and antioxidant activities of North China rice wine (Ji Mo Lao Jiu). Food Science & Nutrition, 1, 307–314.CrossRefGoogle Scholar
  17. Hemalatha, S., Platel, K., & Srinivasan, K. (2007). Influence of germination and fermentation on bioaccessibility of zinc and iron from cereals and pulses. European Journal of Clinical Nutrition, 61, 342–348.PubMedCrossRefPubMedCentralGoogle Scholar
  18. Hesseltine, C. W. (1983). The future of fermented foods. Nutrition Reviews, 41, 293–301.PubMedCrossRefPubMedCentralGoogle Scholar
  19. Hirayama, T. (1982). Relationship of soybean paste soup intake to gastric cancer risk. Nutrition and Cancer, 3, 223–233.PubMedCrossRefPubMedCentralGoogle Scholar
  20. Hossain, A., Moon, H. K., & Kim, J. K. (2017). Effect of pre-treatment and extraction conditions on the antioxidant properties of persimmon (Diospyros kaki) leaves. Bioscience, Biotechnology and Biochemistry, 81, 2079–2085.CrossRefGoogle Scholar
  21. Hossain, A., Moon, H. K., & Kim, J.-K. (2018a). Antioxidant properties of Korean major persimmon (Diospyros kaki) leaves. Food Science and Biotechnology, 27, 177–184.PubMedCrossRefPubMedCentralGoogle Scholar
  22. Hossain, A., Moon, H. K., & Kim, J.-K. (2018b). Effect of drying and harvest time on the physicochemical properties of the most common Korean persimmon leaves. Korean Journal of Food Preservation, 25, 428–435.CrossRefGoogle Scholar
  23. Hotz, C., & Gibson, R. S. (2007). Traditional food-processing and preparation practices to enhance the bioavailability of micronutrients in plant-based diets. The Journal of Nutrition, 137, 1097–1100.PubMedCrossRefPubMedCentralGoogle Scholar
  24. Iyer, B. K., Singhal, R. S., & Ananthanarayan, L. (2013). Characterization and in vitro probiotic evaluation of lactic acid bacteria isolated from idli batter. Food Science and Technology, 50, 1114–1121.Google Scholar
  25. Jagtap, A. G., & Patil, P. B. (2010). Antihyperglycemic activity and inhibition of advanced glycation end product formation by Cuminum cyminum in streptozotocin induced diabetic rats. Food and Chemical Toxicology, 48, 2030–2036.PubMedCrossRefPubMedCentralGoogle Scholar
  26. Jamuna, J. B., Mahadevamma, S., Vishwanatha, S., & Paramahans, V. S. (2010). Effect of banana (Musa Sp. Cultivar Elakki Bale) flower and stem on enzyme activities of intestinal and renal disaccharidases in streptozotocin-induced diabetic rats. Journal of Food Biochemistry, 34, 564–580.Google Scholar
  27. Kohajdová, Z. (2010). Fermented cereal products. In A. Pandey, C. R. Soccol, E. Gnansounou, C. Larroche, P. Singh Nigam, & C. G. Dussap (Eds.), Comprehensive Food Fermentation Biotechnology (pp. 57–82). New Delhi: Asiatech.Google Scholar
  28. Kristbergsson, K., & Ötles, S. (2016). Functional properties of traditional foods (Integrating Food Science and Engineering Knowledge into the Food Chain, ISEKI-Food Series). New York: Springer.CrossRefGoogle Scholar
  29. Kwon, Y. D., Jang, D.-J., Yang, H. J., & Chung, K. R. (2014). History of Korean gochu, gochujang, and kimchi. Journal of Ethnic Foods, 1, 3–7.CrossRefGoogle Scholar
  30. Law, S. V., Bakar, A. F., Hashim, D. M., & Hamid, A. (2011). Popular fermented foods and beverages in Southeast Asia. International Food Research Journal, 18, 475–484.Google Scholar
  31. Lee, G.-I., Lee, H.-M., & Lee, C.-H. (2012). Food safety issues in industrialization of traditional Korean foods. Food Control, 24, 1–5.CrossRefGoogle Scholar
  32. Leroy, F. D. R., & De Vuyst, L. (2004). Lactic acid bacteria as functional starter culture for the food fermentation industry. Trends in Food Science and Technology, 15, 67–78.CrossRefGoogle Scholar
  33. Li, L. T., Yin, L. J., & Saito, M. (2004). Review: Function of traditional foods and food culture in China. Japan Agricultural Research Quarterly, 38, 213–220.CrossRefGoogle Scholar
  34. Liu, S., Han, Y., & Zhou, Z.-J. (2011). Lactic acid bacteria in traditional fermented Chinese foods. Food Research International, 44, 643–651.CrossRefGoogle Scholar
  35. Lücke, F. K., & Zangerl, P. (2014). Food safety challenges associated with traditional foods in German-speaking regions. Food Control, 43, 217–230.CrossRefGoogle Scholar
  36. Ministero Agricoltura (1999). Decreto Legislativo 30 Aprile 1998 n. 173. Decreto Ministero Agricoltura 8 settembre 1999 n. 350.Google Scholar
  37. Mudryj, A. N., Yu, N., & Aukema, H. M. (2014). Nutritional and health benefits of pulses. Applied Physiology, Nutrition, and Metabolism, 39, 1197–1204.PubMedCrossRefGoogle Scholar
  38. Mukherjee, K. P., Nemaa, K. N., Maitya, N., & Sarkar, K. B. (2013). Phytochemical and therapeutic potential of cucumber. Fitoterapia, 84, 227–236.PubMedCrossRefGoogle Scholar
  39. Mukherjee, S. K., Albury, M. N., Pederson, C. S., Vanveen, A. G., & Steinkraus, K. H. (1965). Role of Leuconostoc mesenteroides in leavening the batter of idli, a fermented food of India. Journal of Applied Microbiology, 13, 227–231.Google Scholar
  40. Murooka, Y., & Yamshita, M. (2008). Traditional healthful fermented products of Japan. Journal of Industrial Microbiology & Biotechnology, 35, 791–798.CrossRefGoogle Scholar
  41. Naz, S., Jabeen, S., Ilyas, S., Manzoor, F., Aslam, F., & Ali, A. (2010). Antibacterial activity of Curcuma longa varieties against different strains of bacteria. Pakistan Journal of Botany, 42, 455–462.Google Scholar
  42. Nedović, V., Raspor, P., Lević, J., Tumbas Šaponjac, V., & Barbosa-Cánovas, G. V. (Eds.). (2016). Emerging and traditional technologies for safe, healthy and quality food (Food Engineering Series). Cham, Heidelberg, New York, Dordrecht, London: Springer.Google Scholar
  43. Nzwalo, N., & Cliff, J. (2011). Poverty, cassava, and cyanogen intake to toxico-nutritional neurological diseases. PLoS Neglected Tropical Diseases, 5, e1051.PubMedPubMedCentralCrossRefGoogle Scholar
  44. Oguntoyinbo, F. A. (2014). Safety challenges associated with traditional foods of West Africa. Food Reviews International, 30, 338–358.CrossRefGoogle Scholar
  45. Panagou, E. Z., Nychas, G. J. E., & Sofos, J. N. (2013). Types of traditional Greek foods and their safety. Food Control, 29, 32–41.CrossRefGoogle Scholar
  46. Park, K.-Y. (1984). Aflatoxin: factors affecting aflatoxin production. Journal of the Korean Society of Food and Nutrition, 13, 117–126.Google Scholar
  47. Park, K.-Y., Jeong, J.-K., Lee, Y.-E., & Daily, J. W. (2014). Health benefits of kimchi (Korean fermented vegetables) as a probiotic food. Journal of Medicinal Food, 17, 6–20.PubMedCrossRefPubMedCentralGoogle Scholar
  48. Peter, K. V. (2001). Handbook of herbs and spices (Vol. 1, pp. 573–562). Cambridge: Woodhead. ISBN, 85.CrossRefGoogle Scholar
  49. Prakash, V., Martin-Belloso, O., Keener, L., Astley, S., Braun, S., McMahon, H., & Lelieveld, H. (2015). Regulating safety of traditional and ethnic foods (1st ed.). Waltham, MA: Academic Press.Google Scholar
  50. Ray, R. C., & Montet, D. (2014). Microorganisms and fermentation of traditional foods (pp. 341–369). Boca Raton, London, New York: CRC Press.CrossRefGoogle Scholar
  51. Sarkar, P., Lohith, K. D. H., Dhumal, C., Panigrahi, S. S., & Choudhary, R. (2015). Traditional and ayurvedic foods of Indian origin. Journal of Ethnic Foods, 2, 97–109.CrossRefGoogle Scholar
  52. Satish Kumar, R., Kanmani, P., Yuvaraj, N., Paari, K. A., Pattukumar, V., & Arul, V. (2013). Traditional Indian fermented foods: A rich source of lactic acid bacteria. International Journal of Food Sciences and Nutrition, 64, 415–428.PubMedCrossRefGoogle Scholar
  53. Sharma, H., Zhang, X., & Dwivedi, C. (2010). The effect of ghee (clarified butter) on serum lipid levels and microsomal lipid peroxidation. Ayu, 31, 134–140.PubMedPubMedCentralCrossRefGoogle Scholar
  54. Skandamis, P. N., & Nychas, G. J. E. (2007). Pathogens: risks and control. In F. Ed Toldra (Ed.), Handbook of fermented meat and poultry (pp. 427–454). Oxford: Blackwell.Google Scholar
  55. Srinivasan, K. (2010). Traditional Indian functional foods. In J. Shi, C. T. Ho, & F. Shahidi (Eds.), Functional foods of the East (Nutraceutical Science and Technology. Series 10) (pp. 51–76). Florida: CRC Press.CrossRefGoogle Scholar
  56. Tajkarimi, M., Ibrahim, S. A., & Fraser, A. M. (2013). Food safety challenges associated with traditional foods in Arabic speaking countries of the Middle East. Trends in Food Science and Technology, 29, 116–123.CrossRefGoogle Scholar
  57. Temelli, S., Anar, S., Sen, C., & Akyuva, P. (2006). Determination of microbiological contamination sources during Turkish white cheese production. Food Control, 17, 856–861.CrossRefGoogle Scholar
  58. Tontisirin, K., Mantel, G., & Battacharjee, L. (2002). Food based strategies to meet the challenges of micronutrient malnutrition in the developing world. Proceedings of the Nutrition Society, 61, 243–250.PubMedCrossRefPubMedCentralGoogle Scholar
  59. Villegas, I., Sánchez-Fidalgo, S., & Alarcón de la Lastra, C. (2008). New mechanisms and therapeutic potential of curcumin for colorectal cancer. Molecular Nutrition & Food Research, 52, 1040–1061.CrossRefGoogle Scholar
  60. Wang, L., Saito, M., Tatsumi, E., & Li, L. (2003). Antioxidative and angiotensin I-converting enzyme inhibitory activities of sufu (fermented tofu) extracts. Japan Agricultural Research Quarterly, 37, 129–132.CrossRefGoogle Scholar
  61. Wüthrich, B., Schmid-Grendelmeyer, P., & Lundberg, M. (1997). Anaphylaxis to saffron. Allergy (EAACI), 52, 476–477.CrossRefGoogle Scholar
  62. Xiao, Y., Xing, G., Rui, X., Li, W., Chen, X., Jiang, M., & Dong, M. (2015). Effect of solid-state fermentation with Cordyceps militaris SN-18 on physicochemical and functional properties of chickpea (Cicer arietinum L.) flour. LWT-Food Science and Technology, 63, 1317–1324.CrossRefGoogle Scholar
  63. Yi, B., Hu, L., Mei, W., Zhou, K., Wang, H., Luo, Y., … Dai, H. (2010). Antioxidant phenolic compounds of cassava (Manihot esculenta) from Hainan. Molecules, 16, 10,157–10,167.CrossRefGoogle Scholar
  64. Yu, C. M., Ho, H. C. J., Lai, S.-H., & Henderson, E. B. (1986). Cantonese-style salted fish as a cause of nasopharyngeal carcinoma: report of a case-control study in Hong Kong. Cancer Research, 46, 958–961.Google Scholar
  65. Yu, C. M., Ho, H. C. J., Ross, K. R., & Henderson, E. B. (1981). Nasopharyngeal carcinoma in Chinese-Salted fish or inhaled smoke? Preventive Medicine, 10, 15–24.PubMedCrossRefPubMedCentralGoogle Scholar
  66. Yu, P., Cheng, S., Xiang, J., Yu, B., Zhang, M., Zhang, C., & Xu, X. (2015). Expectorant, antitussive, anti-inflammatory activities and compositional analysis of Aster tataricus. Journal of Ethnopharmacology, 164, 328–333.PubMedCrossRefPubMedCentralGoogle Scholar
  67. Zhou, Y., Xie, F., Zhou, X., Wang, Y., Tang, W., & Xiao, Y. (2016). Effects of Maillard reaction on flavor and safety of Chinese traditional food: Roast duck. Journal of the Science of Food and Agriculture, 96, 1915–1922.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Abul Hossain
    • 1
  • Md. Jiaur Rahman
    • 2
  1. 1.Department of BiochemistryMemorial University of NewfoundlandSt. John’sCanada
  2. 2.Department of Food Processing and PreservationHajee Mohammad Danesh Science and Technology UniversityDinajpurBangladesh

Personalised recommendations