Advertisement

Cloud Workload Characterization

  • Naresh Kumar Sehgal
  • Pramod Chandra P. Bhatt
  • John M. Acken
Chapter

Abstract

In this chapter, we describe various Cloud workloads and optimization issues from the points of view of various players involved in Cloud Computing. A comprehensive categorization of various types of diverse workloads is proposed, and nature of stress that each of these places on the resources in a data center is described. These categorizations extend beyond the Cloud for completeness. The Cloud workload categories proposed in this chapter are big streaming data, big database creation and calculation, big database search and access, big data storage, in-memory database, many tiny tasks (Ants), high-performance computing (HPC), highly interactive single person, highly interactive multi-person jobs, single computer intensive jobs, private local tasks, slow communication, real-time local tasks, location aware computing, real-time geographically dispersed, access control, and voice or video over IP. We evaluate causes of resource contention in a multi-tenanted data center and conclude by suggesting remedial measures that both Cloud service providers and Cloud customers can undertake to minimize their pain points. This chapter identifies the relationship of critical computer resources to various workload categories. Low-level hardware measurements can be used to distinguish job transitions between categories and within phases of categories. This relationship with the categories allows a technical basis for SLAs, capital purchase decisions, and future computer architecture design decisions. A better understanding of these pain points, underlying causes, and suggested remedies will help IT managers to make intelligent decisions about moving their mission critical or enterprise class jobs into Public Cloud.

References

  1. 1.
    Bennani, M. N., & Menasce, D. A. (2005). Resource allocation for autonomic data centers using analytic performance models. Autonomic Computing, 2005. ICAC 2005. Proceedings of the second international conference on, pp. 229–240.Google Scholar
  2. 2.
    Appleby, K., Fakhouri, S., Fong, L., Goldszmidt, G., Kalantar, M., Krishnakumar, S., Pazel, D. P., Pershing, J., & Rochwerger, B.. (2001). Oceano-SLA based management of a computing utility. Integrated network management proceedings 2001 IEEE/IFIP international symposium on, pp. 855–868.Google Scholar
  3. 3.
    Ardagna, D., Trubian, M., & Zhang, L. (2007). SLA based resource allocation policies in autonomic environments. Journal of Parallel and Distributed Computing, 67(3), 259–270.CrossRefGoogle Scholar
  4. 4.
    Alarm, S., Barrett, R. F., Kuehn, J. A., Roth, P. C., & Vetter, J. S. (2006). Characterization of scientific workloads on systems with multi-core processors. Workload Characterization, 2006 IEEE International Symposium on, pp. 225–236.Google Scholar
  5. 5.
    Ersoz, D., Yousif, M. S., & Das, C. R.. (2007). Characterizing network traffic in a cluster-based, multi-tier data center. Distributed computing systems, 2007. ICDCS'07. 27th international conference on, pp. 59.Google Scholar
  6. 6.
    Khan, A., Yan, X., Tao, S., & Anerousis, N. (2012). Workload characterization and prediction in the Cloud: A multiple time series approach. Network Operations and Management Symposium (NOMS), 2012 IEEE, pp. 1287–1294.Google Scholar
  7. 7.
    Zhang, Q., Hellerstein, J. L., & Boutaba, R.. (2011). Characterizing task usage shapes in Google’s compute clusters. Proceedings of large-scale distributed systems and middleware (LADIS 2011).Google Scholar
  8. 8.
    Arlitt, M. F., & Williamson, C. L. (1997). Internet Web servers: Workload characterization and performance implications. IEEE/ACM Transactions on Networking (ToN), 5(5), 631–645.CrossRefGoogle Scholar
  9. 9.
    Bodnarchuk, R. & Bunt, R. (1991). A synthetic workload model for a distributed system file server. ACM SIGMETRICS performance evaluation review, pp. 50–59.Google Scholar
  10. 10.
    Chesire, M., Wolman, A., Voelker, G., & Levy, H.. (2001). Measurement and analysis of a streaming-media workload. Proceedings of the 2001 USENIX Symposium on internet technologies and systems.Google Scholar
  11. 11.
    Maxiaguine, A., Künzli, S., & Thiele, L. (2004). Workload characterization model for tasks with variable execution demand. Proceedings of the conference on design, automation and test in Europe-Volume 2, p. 21040.Google Scholar
  12. 12.
    Yu, P. S., Chen, M. S., Heiss, H. U., & Lee, S. (1992). On workload characterization of relational database environments. Software Engineering, IEEE Transactions on, 18, 347–355.CrossRefGoogle Scholar
  13. 13.
    Calzarossa, M., & Serazzi, G. (1985). A characterization of the variation in time of workload arrival patterns. Computers, IEEE Transactions on, 100, 156–162.CrossRefGoogle Scholar
  14. 14.
    Standard Performance Evaluation Corporation. (2006). SPEC CPU2006. Available: http://www.spec.org/cpu2006/, 8 Nov 2013.
  15. 15.
    Bienia, C., Kumar, S., Singh, J. P., & Li, K. (2008). The PARSEC benchmark suite: Characterization and architectural implications. Presented at the proceedings of the 17th international conference on parallel architectures and compilation techniques, Toronto.Google Scholar
  16. 16.
    Jackson, K. R., Ramakrishnan, L., Muriki, K., Canon, S., Cholia, S., Shalf, J., Wasserman, H. J., & Wright, N. J.. (2010). Performance analysis of high performance computing applications on the amazon web services cloud. Cloud computing technology and science (CloudCom), 2010 IEEE second international conference on, pp. 159–168.Google Scholar
  17. 17.
    Skinner, D.. (2005). Integrated performance monitoring: A portable profiling infrastructure for parallel applications. Proceedings of ISC2005: International supercomputing conference, Heidelberg.Google Scholar
  18. 18.
    National Energy Research Scientific Computing Center. NERSC. Available: www.nersc.gov. 8 Nov 2013.
  19. 19.
    Xie, Y. & Loh, G. (2008). Dynamic classification of program memory behaviors in CMPs. The 2nd workshop on Chip multiprocessor memory systems and interconnects.Google Scholar
  20. 20.
    Younggyun, K., Knauerhase, R., Brett, P., Bowman. M., Zhihua, W., & Pu, C. (2007). An analysis of performance interference effects in virtual environments. Performance analysis of systems and software, 2007. ISPASS 2007. IEEE international symposium on, pp. 200–209.Google Scholar
  21. 21.
    Mell, P., & Grance, T. (2011). The NIST definition of cloud computing (draft). NIST Special Publication, 800, 145.Google Scholar
  22. 22.
    Emeakaroha, V. C., Brandic, I., Maurer, M., & Dustdar, S. (2010) Low-level metrics to high-level SLAs-LoM2HiS framework: Bridging the gap between monitored metrics and SLA parameters in Cloud environments. High performance computing and simulation (HPCS), 2010 international conference on, pp. 48–54.Google Scholar
  23. 23.
    Carlyle, A. G., Harrell, S. L., & Smith, P. M. (2010). Cost-effective HPC: The community or the cloud?. Cloud computing technology and science (CloudCom), 2010 IEEE second international conference on, pp. 169–176.Google Scholar
  24. 24.
    Zhai, Y., Liu, M., Zhai, J., Ma, X., & Chen, W.. (2011). Cloud versus in-house cluster: Evaluating amazon cluster compute instances for running mpi applications. State of the Practice Reports, p. 11.Google Scholar
  25. 25.
    Evangelinos, C., & Hill, C. (2008). Cloud computing for parallel scientific HPC applications: Feasibility of running coupled atmosphere-ocean climate models on Amazon’s EC2. Ratio, 2, 2–34.Google Scholar
  26. 26.
    Khanna, R., & Kumar, M. J. (2011). A vision for platform autonomy. Santa Clara: Publisher Intel Press.Google Scholar
  27. 27.
    Chapman, M. R. R. (2006). Search of stupidity: Over twenty years of high tech marketing disasters. Berkeley: Apress.Google Scholar
  28. 28.
    Schneier, B. (2009). Schneier on Security. Hoboken: Wiley.Google Scholar
  29. 29.
    Intel Corporation. VTune Amplifier XE. Available: http://software.intel.com/en-us/intel-vtune-amplifier-xe, 8 Nov 2013.
  30. 30.
    Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R., Konwinski, A., Lee, G., Patterson, D., Rabkin, A., & Stoica, I. (2010). A view of cloud computing. Communications of the ACM, 53, 50–58.CrossRefGoogle Scholar
  31. 31.
    Bacigalupo, D. A., van Hemert, J., Usmani, A., Dillenberger, D. N., Wills, G. B., & Jarvis, S. A. (2010). Resource management of enterprise cloud systems using layered queuing and historical performance models. Parallel & distributed processing, workshops and Phd forum (IPDPSW), 2010 IEEE international symposium on, pp. 1–8.Google Scholar
  32. 32.
    Knauerhase, R., Brett, P., Hohlt, B., Li, T., & Hahn, S. (2008). Using OS observations to improve performance in multicore systems. IEEE Micro, 28, 54–66.CrossRefGoogle Scholar
  33. 33.
    Fedorova, A., Blagodurov, S., & Zhuravlev, S. (2010). Managing contention for shared resources on multicore processors. Communications of the ACM, 53, 49–57.CrossRefGoogle Scholar
  34. 34.
    Fedorova, A., Seltzer, M., & Smith, M. D. (2007). Improving performance isolation on chip multiprocessors via an operating system scheduler. Presented at the proceedings of the 16th international conference on parallel architecture and compilation techniques.Google Scholar
  35. 35.
    Nesbit, K. J., Moreto, M., Cazorla, F. J., Ramirez, A., Valero, M., & Smith, J. E. (2008). Multicore Resource Management. IEEE Micro, 28, 6–16.CrossRefGoogle Scholar
  36. 36.
    Intel Corporation. Intel Data Center Manager(TM). Available: www.intel.com/DataCenterManager. 8 Nov 2013.

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Naresh Kumar Sehgal
    • 1
  • Pramod Chandra P. Bhatt
    • 2
  • John M. Acken
    • 3
  1. 1.Data Center GroupIntel CorporationSanta ClaraUSA
  2. 2.Computer Science and Information Technology ConsultantRetd. Prof. IIT DelhiBangaloreIndia
  3. 3.Electrical and Computer EngineeringPortland State UniversityPortlandUSA

Personalised recommendations