Advertisement

Cloud Computing Pyramid

  • Naresh Kumar Sehgal
  • Pramod Chandra P. Bhatt
  • John M. Acken
Chapter

Abstract

In this chapter, we start by examining the roots of Cloud Computing, present a usage model pyramid for different types of services, and present five essential characteristics identified by NIST. Then various stakeholders in Cloud Computing value chain are reviewed along with their concerns. We discuss implementation considerations for Cloud data centers and wrap up with an overview of NIST framework for cyber security functions.

References

  1. 1.
  2. 2.
  3. 3.
    Mell, P., & Grance, T. (2011). The NIST definition of Cloud Computing (draft). NIST Special Publication, 800, 145.Google Scholar
  4. 4.
    Appleby, K., Fakhouri, S., Fong, L., Goldszmidt, G., Kalantar, M., Krishnakumar, S., Pazel, D. P., Pershing, J., & Rochwerger, B.. (2001) Oceano-SLA based management of a computing utility. Integrated network management proceedings, 2001 IEEE/IFIP international symposium on, pp. 855–868.Google Scholar
  5. 5.
    Emeakaroha, V. C., Brandic, I., Maurer, M., & Dustdar, S.. (2010). Low-level metrics to high-level SLAs-LoM2HiS framework: Bridging the gap between monitored metrics and SLA parameters in Cloud environments. High performance computing and simulation (HPCS), 2010 international conference on, pp. 48–54.Google Scholar
  6. 6.
    Bennani, M. N. & Menasce, D. A. (2005). Resource allocation for autonomic data centers using analytic performance models. Autonomic computing, 2005. ICAC 2005. Proceedings. Second international conference on, pp. 229–240.Google Scholar
  7. 7.
    Khan, A., Yan, X., Tao, S., & Anerousis, N. (2012). Workload characterization and prediction in the Cloud: A multiple time series approach. Network Operations and Management Symposium (NOMS), 2012 IEEE, pp. 1287–1294.Google Scholar
  8. 8.
    Carlyle, A. G., Harrell, S. L., & Smith, P. M. (2010) Cost-effective HPC: The community or the Cloud?. Cloud Computing technology and science (CloudCom), 2010 IEEE second international conference on, pp. 169–176.Google Scholar
  9. 9.
    Zhai, Y., Liu, M., Zhai, J., Ma, X., & Chen, W. (2011). Cloud versus in-house cluster: Evaluating amazon cluster compute instances for running mpi applications. State of the Practice Reports, p. 11.Google Scholar
  10. 10.
    Evangelinos, C., & Hill, C. (2008). Cloud Computing for parallel scientific HPC applications: Feasibility of running coupled atmosphere-ocean climate models on Amazon’s EC2. Ratio, 2, 2–34.Google Scholar
  11. 11.
    Mulia, W. D., Sehgal, N., Sohoni, S., Acken, J. M., Stanberry, C. L., & Fritz, D. J. (2013). Cloud workload characterization. IETE Technical Review (Institution of Electronics and Telecommunication Engineers, India), 30(5), 382–397.Google Scholar
  12. 12.
  13. 13.
  14. 14.
    Bhatt, P. C. P. An introduction to operating systems concepts and practice (GNU/LINUX) (4th ed., pp. 305–311). Prentice Hall India Pvt Ltd, New Delhi, Jan 2014 pp. 558–562, and pp. 681.Google Scholar
  15. 15.

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Naresh Kumar Sehgal
    • 1
  • Pramod Chandra P. Bhatt
    • 2
  • John M. Acken
    • 3
  1. 1.Data Center GroupIntel CorporationSanta ClaraUSA
  2. 2.Computer Science and Information Technology ConsultantRetd. Prof. IIT DelhiBangaloreIndia
  3. 3.Electrical and Computer EngineeringPortland State UniversityPortlandUSA

Personalised recommendations