Magnetic Resonance Measures of Calf Muscle Physiology in PAD

  • Christopher M. KramerEmail author


In addition to magnetic resonance angiography (MRA) for assessment of arterial lumen and stenosis location and extent as well as atherosclerosis plaque imaging, MR imaging (MRI) of calf muscle physiology has developed as a research tool in peripheral arterial disease (PAD). Techniques have been developed to measure calf muscle perfusion, oxygenation, and energetics using a variety of approaches. We will review all of these techniques in the present chapter.


Magnetic resonance measures Calf muscle physiology  PAD MRA Peripheral arterial disease 


  1. 1.
    Yang L, Krefting I, Gorovets A, Marzella L, Kaiser J, Boucher R, et al. Nephrogenic systemic fibrosis and class labeling of gadolinium-based contrast agents by the Food and Drug Administration. Radiology. 2012;265(1):248–53. Scholar
  2. 2.
    Williams DS, Detre JA, Leigh JS, Koretsky AP. Magnetic resonance imaging of perfusion using spin inversion of arterial water. Proc Natl Acad Sci. 1992;89(1):212–6.. CrossRefGoogle Scholar
  3. 3.
    Raynaud J, Duteil S, Vaughan J, Hennel F, Wary C, Leroy-Willig A, et al. Determination of skeletal muscle perfusion using arterial spin labeling NMRI: validation by comparison with venous occlusion plethysmography. Magn Reson Med. 2001;46:305–11.CrossRefGoogle Scholar
  4. 4.
    Thompson RB, Aviles RJ, Faranesh AZ, Raman VK, Wright V, Balaban RS, et al. Measurement of skeletal muscle perfusion during postischemic reactive hyperemia using contrast-enhanced MRI with a step-input function. Magn Reson Med. 2005;54(2):289–98.. CrossRefGoogle Scholar
  5. 5.
    Isbell D, Berr S, Toledano A, Epstein F, Meyer C, Rogers W, et al. Delayed calf muscle phosphocreatine recovery after exercise identifies peripheral arterial disease. J Am Coll Cardiol. 2006;47(11):2289–97.CrossRefGoogle Scholar
  6. 6.
    Jiji RS, Pollak A, Epstein F, Antkowiak P, Meyer C, Weltman A, et al. Reproducibility of rest and exercise stress contrast-enhanced calf perfusion magnetic resonance imaging in peripheral arterial disease. J Cardiovasc Magn Reson. 2013;15:14.CrossRefGoogle Scholar
  7. 7.
    Wu WC, Mohler E III, Ratcliffe SJ, Wehrli FW, Detre JA, Floyd TF. Skeletal muscle microvascular flow in progressive peripheral artery disease: assessment with continuous arterial spin-labeling perfusion magnetic resonance imaging. J Am Coll Cardiol. 2009;53(25):2372–7.. CrossRefGoogle Scholar
  8. 8.
    Pollak AW, Meyer CH, Epstein FH, Jiji RS, Hunter JR, DiMaria JM, et al. Arterial spin labeling MR imaging reproducibly measures peak-exercise calf muscle perfusion: a study in patients with peripheral arterial disease and healthy volunteers. JACC Cardiovasc Imaging. 2012;5(12):1224–30.. CrossRefGoogle Scholar
  9. 9.
    Lopez D, Pollak A, Meyer C, Epstein F, Pesch A, Jiji R, et al. Arterial spin labeling calf perfusion CMR in peripheral arterial disease: cuff occlusion hyperemia vs. exercise. J Cardiovasc Magn Reson. 2015;17:23.CrossRefGoogle Scholar
  10. 10.
    Jacobi B, Bongartz G, Partovi S, Schulte AC, Aschwanden M, Lumsden AB, et al. Skeletal muscle BOLD MRI: from underlying physiological concepts to its usefulness in clinical conditions. JMRI. 2012;35(6):1253–65. Scholar
  11. 11.
    Duteil S, Wary C, Raynaud J, Lebon V, Lesage D, Leroy-Willig A, et al. Influence of vascular filling and perfusion on BOLD contrast during reactive hyperemia in human skeletal muscle. Magn Reson Med. 2006;55:450–4.CrossRefGoogle Scholar
  12. 12.
    Ledermann H, Schulte AC, Heidecker HG, Aschwanden M, Jager KA, Scheffler K, et al. Blood oxygenation level-dependent magnetic resonance imaging of the skeletal muscle in patients with peripheral arterial occlusive disease. Circulation. 2006;113(25):2929–35.. CrossRefGoogle Scholar
  13. 13.
    Logothetis NK, Wandell BA. Interpreting the BOLD signal. Annu Rev Physiol. 2004;66(1):735–69. Scholar
  14. 14.
    Versluis B, Backes WH, van Eupen MGA, Jaspers K, Nelemans PJ, Rouwet EV, et al. Magnetic resonance imaging in peripheral arterial disease: reproducibility of the assessment of morphological and functional vascular status. Invest Radiol. 2011;46(1):11–24.. CrossRefGoogle Scholar
  15. 15.
    Englund E, Langham MC, Li C, Rodgers ZB, Floyd TF, Mohler ER, et al. Combined measurement of perfusion, venous oxygen saturation, and skeletal muscle T(2)∗ during reactive hyperemia in the leg. J Cardiovasc Magn Reson. 2013;15(1):70.. CrossRefGoogle Scholar
  16. 16.
    Englund E, Langham M, Ratcliffe S, Fanning M, Wehrli F, Mohler E, et al.. Multi-parametric asessment of vascular funciton in peripheral artery disease: dynamic measurement of skeletal muscle perfusion, BOLD signal, and venous oxygen saturation. Circ Cardiovasc Imaging. 2015; 8, pii: e002673.Google Scholar
  17. 17.
    Kramer CM. Novel magnetic resonance imaging end points for physiologic studies in peripheral arterial disease: elegance versus practicality. Circ Cardiovasc Imaging. 2015; 8(4).
  18. 18.
    Ward KM, Aletras AH, Balaban RS. A new class of contrast agents for MRI based on proton chemical exchange dependent saturation transfer (CEST). J Magn Reson. 2000;143(1):79–87.. CrossRefGoogle Scholar
  19. 19.
    Roussel M, Bendahan D, Mattei JP, Le Fur Y, Cozzone PJ. 31P magnetic resonance spectroscopy study of phosphocreatine recovery kinetics in skeletal muscle: the issue of intersubject variability. Biochim Biophys Acta (BBA) – Bioenerg. 2000;1457(1):18–26.. CrossRefGoogle Scholar
  20. 20.
    Isbell D, Epstein F, Zhong X, Dimaria J, Rogers W, Berr S, et al. Calf muscle perfusion at peak exercise in peripheral arterial disease: measurement by first pass contrast-enhanced magnetic resonance imaging. J Magn Reson Imaging. 2007;25:1013–20.CrossRefGoogle Scholar
  21. 21.
    Greiner A, Esterhammer R, Messner H, Biebl M, Muhlthaler H, Fraedrich G, et al. High-energy phosphate metabolism during incremental calf exercise in patients with unilaterally symptomatic peripheral arterial disease measured by phosphor 31 magnetic resonance spectroscopy. J Vasc Surg. 2006;43(5):978–86.. CrossRefGoogle Scholar
  22. 22.
    Pipinos I, Shepard A, Anagnostopoulos P, Katsamouris A, Boska M. Phophorus 31 nuclear magnetic resonance spectroscopy suggests a mitochondrial defect in claudicating skeletal muscle. J Vasc Surg. 2000;31:944–52.CrossRefGoogle Scholar
  23. 23.
    Schocke MFH, Esterhammer R, Kammerlander C, Rass A, Kremser C, Fraedrich G, et al. High-energy phosphate metabolism during incremental calf exercise in humans measured by 31 phosphorus magnetic resonance spectroscopy (31P MRS). Magn Reson Imaging. 2004;22(1):109–15.. CrossRefGoogle Scholar
  24. 24.
    Esterhammer R, Schocke MFH, Gorny O, Posch L, Messner H, Jasc W, et al. Phosphocreatine kinetics in the calf muscle of patients with bilateral symptomatic peripheral arterial disease during exhaustive incremental exercise. Mol Imaging Biol. 2008;10:30–9.CrossRefGoogle Scholar
  25. 25.
    Anderson J, Epstein F, Meyer C, Hagspiel K, Wang H, Berr S, et al. Multifactorial determinants of functional capacity in peripheral arterial disease: uncoupling of calf muscle perfusion and metabolism. J Am Coll Cardiol. 2009;54:628–34.CrossRefGoogle Scholar
  26. 26.
    Kogan F, Haris M, Singh A, Cai K, Debrosse C, Nanga RPR, et al. Method for high-resolution imaging of creatine in vivo using chemical exchange saturation transfer. Magn Reson Med. 2014b;71(1):164–72. Scholar
  27. 27.
    Schmid AI, Meyerspeer M, Robinson SD, Goluch S, Wolzt M, Fiedler GB, et al. Dynamic PCr and pH imaging of human calf muscles during exercise and recovery using 31P gradient-Echo MRI at 7 Tesla. Magn Reson Med. 2016;75(6):2324–31. Scholar
  28. 28.
    Kogan F, Haris M, Debrosse C, Singh A, Nanga RP, Cai K, et al. In vivo chemical exchange saturation transfer imaging of creatine (CrCEST) in skeletal muscle at 3T. JMRI. 2014a;40(3):596–602. Scholar
  29. 29.
    Haris M, Singh A, Cai K, Kogan F, McGarvey J, Debrosse C, et al. A technique for in vivo mapping of myocardial creatine kinase metabolism. Nat Med. 2014;20(2):209–14. Scholar
  30. 30.
    Sporkin H, Allen S, Kramer C, Mathew R, Meyer C. Creatine chemical exchange saturation transfer (CrCEST) voxel and ROI-wise decay maps at 3T for the study of peripheral artery disease. J Cardiovasc Magn Reson. 2018. abstract; P077.Google Scholar
  31. 31.
    Lebon V, Carlier PG, Brillault-Salvat C, Leroy-Willig A. Simultaneous measurement of perfusion and oxygenation changes using a multiple gradient-echo sequence: application to human muscle study. Magn Reson Imaging. 1998;16(7):721–9.. CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Departments of Medicine and RadiologyUniversity of VirginiaCharlottesvilleUSA

Personalised recommendations