Advertisement

Contrast-Enhanced Ultrasound Perfusion Imaging in Peripheral Arterial Disease

  • Brian P. DavidsonEmail author
  • Jonathan R. Lindner
Chapter

Abstract

Quantitative contrast-enhanced ultrasound (CEU) perfusion imaging, a technique originally developed to evaluate myocardial perfusion, has also been applied to evaluate limb perfusion. CEU relies on the ultrasound detection of encapsulated microbubble contrast agents that remain entirely within the vascular compartment. Advantages of CEU for assessing limb perfusion in PAD are, that is, rapid and safe and can be performed with equipment that is already present in almost all vascular medicine laboratories. It is uniquely suited for evaluating the physiologic impact of PAD because it directly assesses nutritive microvascular flow in muscle that can originate from multiple sources, including major conduit artery inflow, collateral vessel networks, or redistribution from other limb tissues and nonnutritive pathways. Moreover, by virtue of its speed, the technique is extremely well suited to imaging during or within seconds of completing exercise stress. In this chapter, the application of contrast-enhanced ultrasound (CEU) perfusion imaging in peripheral arterial disease will be discussed including details of the imaging technique and both clinical and preclinical studies.

Keywords

Contrast-enhanced ultrasound (CEU) Perfusion imaging Peripheral arterial disease (PAD) 

References

  1. 1.
    Kaufmann BA, Wei K, Lindner JR. Contrast echocardiography. Curr Probl Cardiol. 2007;32(2):51–96.  https://doi.org/10.1016/j.cpcardiol.2006.10.004.CrossRefPubMedGoogle Scholar
  2. 2.
    Lindner JR, Song J, Jayaweera AR, Sklenar J, Kaul S. Microvascular rheology of Definity microbubbles after intra-arterial and intravenous administration. J Am Soc Echocardiogr. 2002;15(5):396–403.CrossRefGoogle Scholar
  3. 3.
    Gramiak R, Shah PM. Echocardiography of the aortic root. Investig Radiol. 1968;3(5):356–66.CrossRefGoogle Scholar
  4. 4.
    Rafter P, Phillips P, Vannan MA. Imaging technologies and techniques. Cardiol Clin. 2004;22(2):181–97.  https://doi.org/10.1016/j.ccl.2004.02.002.CrossRefPubMedGoogle Scholar
  5. 5.
    Porter TR, Mulvagh SL, Abdelmoneim SS, Becher H, Belcik JT, Bierig M, Choy J, Gaibazzi N, Gillam LD, Janardhanan R, Kutty S, Leong-Poi H, Lindner JR, Main ML, Mathias W Jr, Park MM, Senior R, Villanueva F. Clinical applications of ultrasonic enhancing agents in echocardiography: 2018 American Society of Echocardiography Guidelines Update. J Am Soc Echocardiogr. 2018;31(3):241–74.  https://doi.org/10.1016/j.echo.2017.11.013.CrossRefPubMedGoogle Scholar
  6. 6.
    Wei K, Jayaweera AR, Firoozan S, Linka A, Skyba DM, Kaul S. Quantification of myocardial blood flow with ultrasound-induced destruction of microbubbles administered as a constant venous infusion. Circulation. 1998;97(5):473–83.CrossRefGoogle Scholar
  7. 7.
    D’Onofrio M, Crosara S, De Robertis R, Canestrini S, Mucelli RP. Contrast-enhanced ultrasound of focal liver lesions. AJR Am J Roentgenol. 2015;205(1):W56–66.  https://doi.org/10.2214/ajr.14.14203.CrossRefPubMedGoogle Scholar
  8. 8.
    Chomas JE, Dayton P, Allen J, Morgan K, Ferrara KW. Mechanisms of contrast agent destruction. IEEE Trans Ultrason Ferroelectr Freq Control. 2001;48(1):232–48.CrossRefGoogle Scholar
  9. 9.
    Ryu JC, Davidson BP, Xie A, Qi Y, Zha D, Belcik JT, Caplan ES, Woda JM, Hedrick CC, Hanna RN, Lehman N, Zhao Y, Ting A, Lindner JR. Molecular imaging of the paracrine proangiogenic effects of progenitor cell therapy in limb ischemia. Circulation. 2013;127(6):710–9.  https://doi.org/10.1161/CIRCULATIONAHA.112.116103.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Carr CL, Qi Y, Davidson B, Chadderdon S, Jayaweera AR, Belcik JT, Benner C, Xie A, Lindner JR. Dysregulated selectin expression and monocyte recruitment during ischemia-related vascular remodeling in diabetes mellitus. Arterioscler Thromb Vasc Biol. 2011;31(11):2526–33.CrossRefGoogle Scholar
  11. 11.
    Wu MD, Belcik JT, Qi Y, Zhao Y, Benner C, Pei H, Linden J, Lindner JR. Abnormal regulation of microvascular tone in a murine model of sickle cell disease assessed by contrast ultrasound. J Am Soc Echocardiogr. 2015;28(9):1122–8.  https://doi.org/10.1016/j.echo.2015.05.012.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Shim CY, Kim S, Chadderdon S, Wu M, Qi Y, Xie A, Alkayed NJ, Davidson BP, Lindner JR. Epoxyeicosatrienoic acids mediate insulin-mediated augmentation in skeletal muscle perfusion and blood volume. Am J Physiol Endocrinol Metab. 2014;307(12):E1097–104.  https://doi.org/10.1152/ajpendo.00216.2014.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Duerschmied D, Olson L, Olschewski M, Rossknecht A, Freund G, Bode C, Hehrlein C. Contrast ultrasound perfusion imaging of lower extremities in peripheral arterial disease: a novel diagnostic method. Eur Heart J. 2006;27(3):310–5.  https://doi.org/10.1093/eurheartj/ehi636.CrossRefPubMedGoogle Scholar
  14. 14.
    Duerschmied D, Zhou Q, Rink E, Harder D, Freund G, Olschewski M, Bode C, Hehrlein C. Simplified contrast ultrasound accurately reveals muscle perfusion deficits and reflects collateralization in PAD. Atherosclerosis. 2009;202(2):505–12.  https://doi.org/10.1016/j.atherosclerosis.2008.05.046.CrossRefPubMedGoogle Scholar
  15. 15.
    Duerschmied D, Maletzki P, Freund G, Olschewski M, Bode C, Hehrlein C. Success of arterial revascularization determined by contrast ultrasound muscle perfusion imaging. J Vasc Surg. 2010;52(6):1531–6.  https://doi.org/10.1016/j.jvs.2010.07.010.CrossRefPubMedGoogle Scholar
  16. 16.
    Palmowski M, Lederle W, Gaetjens J, Socher M, Hauff P, Bzyl J, Semmler W, Gunther RW, Kiessling F. Comparison of conventional time-intensity curves vs. maximum intensity over time for post-processing of dynamic contrast-enhanced ultrasound. Eur J Radiol. 2010;75(1):e149–53.  https://doi.org/10.1016/j.ejrad.2009.10.030.CrossRefPubMedGoogle Scholar
  17. 17.
    Belcik JT, Qi Y, Kaufmann BA, Xie A, Bullens S, Morgan TK, Bagby SP, Kolumam G, Kowalski J, Oyer JA, Bunting S, Lindner JR. Cardiovascular and systemic microvascular effects of anti-vascular endothelial growth factor therapy for cancer. J Am Coll Cardiol. 2012;60(7):618–25.CrossRefGoogle Scholar
  18. 18.
    Heinonon. Comparison of exogenous adenosine and voluntary exercise on human skeletal muscle perfusion and perfusion heterogeneity. J Appl Physiol. 2010;108(2):378–86.  https://doi.org/10.1152/japplphysiol.00745.2009.CrossRefGoogle Scholar
  19. 19.
    Bonadonna RC, Saccomani MP, Del Prato S, Bonora E, DeFronzo RA, Cobelli C. Role of tissue-specific blood flow and tissue recruitment in insulin-mediated glucose uptake of human skeletal muscle. Circulation. 1998;98(3):234–41.  https://doi.org/10.1161/01.cir.98.3.234.CrossRefPubMedGoogle Scholar
  20. 20.
    Davidson BP, Belcik JT, Landry G, Linden J, Lindner JR. Exercise versus vasodilator stress limb perfusion imaging for the assessment of peripheral artery disease. Echocardiography. 2017;34(8):1187–94.  https://doi.org/10.1111/echo.13601.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Lindner JR, Womack L, Barrett EJ, Weltman J, Price W, Harthun NL, Kaul S, Patrie JT. Limb stress-rest perfusion imaging with contrast ultrasound for the assessment of peripheral arterial disease severity. JACC Cardiovasc Imaging. 2008;1(3):343–50. doi:S1936-878X(08)00100-9 [pii].  https://doi.org/10.1016/j.jcmg.2008.04.001.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Womack L, Peters D, Barrett EJ, Kaul S, Price W, Lindner JR. Abnormal skeletal muscle capillary recruitment during exercise in patients with type 2 diabetes mellitus and microvascular complications. J Am Coll Cardiol. 2009;53(23):2175–83.  https://doi.org/10.1016/j.jacc.2009.02.042.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Sarkar K, Shi WT, Chatterjee D, Forsberg F. Characterization of ultrasound contrast microbubbles using in vitro experiments and viscous and viscoelastic interface models for encapsulation. J Acoust Soc Am. 2005;118(1):539–50.CrossRefGoogle Scholar
  24. 24.
    Leong-Poi H, Swales J, Jayaweera AR, Bin JP, Kaul S, Lindner JR. Effect of microbubble exposure to ultrasound on quantitation of myocardial perfusion. Echocardiography. 2005;22(6):503–9.  https://doi.org/10.1111/j.1540-8175.2005.40001.x.CrossRefPubMedGoogle Scholar
  25. 25.
    Seol SH, Davidson BP, Belcik JT, Mott BH, Goodman RM, Ammi A, Lindner JR. Real-time contrast ultrasound muscle perfusion imaging with intermediate-power imaging coupled with acoustically durable microbubbles. J Am Soc Echocardiogr. 2015;28(6):718–726.e712.  https://doi.org/10.1016/j.echo.2015.02.002.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Amarteifio E, Weber MA, Wormsbecher S, Demirel S, Krakowski-Roosen H, Jores A, Braun S, Delorme S, Bockler D, Kauczor HU, Krix M. Dynamic contrast-enhanced ultrasound for assessment of skeletal muscle microcirculation in peripheral arterial disease. Investig Radiol. 2011;46(8):504–8.  https://doi.org/10.1097/RLI.0b013e3182183a77.CrossRefGoogle Scholar
  27. 27.
    Bragadeesh T, Sari I, Pascotto M, Micari A, Kaul S, Lindner JR. Detection of peripheral vascular stenosis by assessing skeletal muscle flow reserve. J Am Coll Cardiol. 2005;45(5):780–5.  https://doi.org/10.1016/j.jacc.2004.11.045.CrossRefPubMedGoogle Scholar
  28. 28.
    Amarteifio E, Krix M, Wormsbecher S, Demirel S, Braun S, Delorme S, Kauczor HU, Bockler D, Weber MA. Dynamic contrast-enhanced ultrasound for assessment of therapy effects on skeletal muscle microcirculation in peripheral arterial disease: pilot study. Eur J Radiol. 2013;82(4):640–6.  https://doi.org/10.1016/j.ejrad.2012.11.022.CrossRefPubMedGoogle Scholar
  29. 29.
    Amarteifio E, Wormsbecher S, Krix M, Demirel S, Braun S, Delorme S, Bockler D, Kauczor HU, Weber MA. Dynamic contrast-enhanced ultrasound and transient arterial occlusion for quantification of arterial perfusion reserve in peripheral arterial disease. Eur J Radiol. 2012;81(11):3332–8.  https://doi.org/10.1016/j.ejrad.2011.12.030.CrossRefPubMedGoogle Scholar
  30. 30.
    Krix M, Krakowski-Roosen H, Amarteifio E, Furstenberger S, Delorme S, Kauczor HU, Weber MA. Comparison of transient arterial occlusion and muscle exercise provocation for assessment of perfusion reserve in skeletal muscle with real-time contrast-enhanced ultrasound. Eur J Radiol. 2011;78(3):419–24.  https://doi.org/10.1016/j.ejrad.2009.11.014.CrossRefPubMedGoogle Scholar
  31. 31.
    Krix M, Weber MA, Kauczor HU, Delorme S, Krakowski-Roosen H. Changes in the micro-circulation of skeletal muscle due to varied isometric exercise assessed by contrast-enhanced ultrasound. Eur J Radiol. 2010;76(1):110–6.  https://doi.org/10.1016/j.ejrad.2009.05.007.CrossRefPubMedGoogle Scholar
  32. 32.
    Thijssen DH, Black MA, Pyke KE, Padilla J, Atkinson G, Harris RA, Parker B, Widlansky ME, Tschakovsky ME, Green DJ. Assessment of flow-mediated dilation in humans: a methodological and physiological guideline. Am J Physiol Heart Circ Physiol. 2011;300(1):H2–12.  https://doi.org/10.1152/ajpheart.00471.2010.CrossRefPubMedGoogle Scholar
  33. 33.
    Klabunde RE, Laughlin MH, Armstrong RB. Systemic adenosine deaminase administration does not reduce active hyperemia in running rats. J Appl Physiol (1985). 1988;64(1):108–14.CrossRefGoogle Scholar
  34. 34.
    Davidson BP, Belcik JT, Mott BH, Landry G, Lindner JR. Quantification of residual limb skeletal muscle perfusion with contrast-enhanced ultrasound during application of a focal junctional tourniquet. J Vasc Surg. 2016;63(1):148–53.  https://doi.org/10.1016/j.jvs.2014.06.107.CrossRefPubMedGoogle Scholar
  35. 35.
    Pascotto M, Leong-Poi H, Kaufmann B, Allrogen A, Charalampidis D, Kerut EK, Kaul S, Lindner JR. Assessment of ischemia-induced microvascular remodeling using contrast-enhanced ultrasound vascular anatomic mapping. J Am Soc Echocardiogr. 2007;20(9):1100–8.  https://doi.org/10.1016/j.echo.2007.02.016.CrossRefPubMedGoogle Scholar
  36. 36.
    Shah BN, Gonzalez-Gonzalez AM, Drakopoulou M, Chahal NS, Bhattacharyya S, Li W, Khattar RS, Senior R. The incremental prognostic value of the incorporation of myocardial perfusion assessment into clinical testing with stress echocardiography study. J Am Soc Echocardiogr. 2015;28(11):1358–65.  https://doi.org/10.1016/j.echo.2015.07.001.CrossRefPubMedGoogle Scholar
  37. 37.
    Dolan MS, Gala SS, Dodla S, Abdelmoneim SS, Xie F, Cloutier D, Bierig M, Mulvagh SL, Porter TR, Labovitz AJ. Safety and efficacy of commercially available ultrasound contrast agents for rest and stress echocardiography a multicenter experience. J Am Coll Cardiol. 2009;53(1):32–8.  https://doi.org/10.1016/j.jacc.2008.08.066.CrossRefPubMedGoogle Scholar
  38. 38.
    Dwivedi G, Janardhanan R, Hayat SA, Swinburn JM, Senior R. Prognostic value of myocardial viability detected by myocardial contrast echocardiography early after acute myocardial infarction. J Am Coll Cardiol. 2007;50(4):327–34.  https://doi.org/10.1016/j.jacc.2007.03.036.CrossRefPubMedGoogle Scholar
  39. 39.
    Villanueva FS. Myocardial contrast echocardiography in acute myocardial infarction. Am J Cardiol. 2002;90(10a):38j–47j.CrossRefGoogle Scholar
  40. 40.
    Thomas KN, Cotter JD, Lucas SJ, Hill BG, van Rij AM. Reliability of contrast-enhanced ultrasound for the assessment of muscle perfusion in health and peripheral arterial disease. Ultrasound Med Biol. 2015;41(1):26–34.  https://doi.org/10.1016/j.ultrasmedbio.2014.06.012.CrossRefPubMedGoogle Scholar
  41. 41.
    Goh V, Halligan S, Hugill JA, Bartram CI. Quantitative assessment of tissue perfusion using MDCT: comparison of colorectal cancer and skeletal muscle measurement reproducibility. AJR Am J Roentgenol. 2006;187(1):164–9.  https://doi.org/10.2214/ajr.05.0050.CrossRefPubMedGoogle Scholar
  42. 42.
    Davidson BP, Hodovan J, Belcik JT, Moccetti F, Xie A, Ammi AY, Lindner JR. Rest-stress limb perfusion imaging in humans with contrast ultrasound using intermediate-power imaging and microbubbles resistant to inertial cavitation. J Am Soc Echocardiogr. 2017;30(5):503–510.e501.  https://doi.org/10.1016/j.echo.2016.12.011.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Mustapha JA, Diaz-Sandoval LJ, Adams G, Jaff MR, Beasley R, McGoff T, Finton S, Miller LE, Ansari M, Saab F. Lack of association between limb hemodynamics and response to infrapopliteal endovascular therapy in patients with critical limb ischemia. J Invasive Cardiol. 2017;29(5):175–80.PubMedGoogle Scholar
  44. 44.
    Lane R, Harwood A, Watson L, Leng GC. Exercise for intermittent claudication. Cochrane Database Syst Rev. 2017;12:CD000990.  https://doi.org/10.1002/14651858.CD000990.pub4.CrossRefPubMedGoogle Scholar
  45. 45.
    Aerden D, Massaad D, von Kemp K, van Tussenbroek F, Debing E, Keymeulen B, Van den Brande P. The ankle – brachial index and the diabetic foot: a troublesome marriage. Ann Vasc Surg. 2011;25(6):770–7.  https://doi.org/10.1016/j.avsg.2010.12.025.CrossRefPubMedGoogle Scholar
  46. 46.
    Potier L, Abi Khalil C, Mohammedi K, Roussel R. Use and utility of ankle brachial index in patients with diabetes. Eur J Vasc Endovasc Surg. 2011;41(1):110–6.  https://doi.org/10.1016/j.ejvs.2010.09.020.CrossRefPubMedGoogle Scholar
  47. 47.
    Lawall H, Bramlage P, Amann B. Treatment of peripheral arterial disease using stem and progenitor cell therapy. J Vasc Surg. 2011;53(2):445–53.  https://doi.org/10.1016/j.jvs.2010.08.060.CrossRefPubMedGoogle Scholar
  48. 48.
    Leong-Poi H, Kuliszewski MA, Lekas M, Sibbald M, Teichert-Kuliszewska K, Klibanov AL, Stewart DJ, Lindner JR. Therapeutic arteriogenesis by ultrasound-mediated VEGF165 plasmid gene delivery to chronically ischemic skeletal muscle. Circ Res. 2007;101(3):295–303.  https://doi.org/10.1161/circresaha.107.148676.CrossRefPubMedGoogle Scholar
  49. 49.
    Cao WJ, Rosenblat JD, Roth NC, Kuliszewski MA, Matkar PN, Rudenko D, Liao C, Lee PJ, Leong-Poi H. Therapeutic angiogenesis by ultrasound-mediated MicroRNA-126-3p delivery. Arterioscler Thromb Vasc Biol. 2015;35(11):2401–11.  https://doi.org/10.1161/atvbaha.115.306506.CrossRefPubMedGoogle Scholar
  50. 50.
    Smith AH, Kuliszewski MA, Liao C, Rudenko D, Stewart DJ, Leong-Poi H. Sustained improvement in perfusion and flow reserve after temporally separated delivery of vascular endothelial growth factor and angiopoietin-1 plasmid deoxyribonucleic acid. J Am Coll Cardiol. 2012;59(14):1320–8.  https://doi.org/10.1016/j.jacc.2011.12.025.CrossRefPubMedGoogle Scholar
  51. 51.
    Behm CZ, Kaufmann BA, Carr C, Lankford M, Sanders JM, Rose CE, Kaul S, Lindner JR. Molecular imaging of endothelial vascular cell adhesion molecule-1 expression and inflammatory cell recruitment during vasculogenesis and ischemia-mediated arteriogenesis. Circulation. 2008;117(22):2902–11.  https://doi.org/10.1161/circulationaha.107.744037.CrossRefPubMedGoogle Scholar
  52. 52.
    Leong-Poi H, Christiansen J, Heppner P, Lewis CW, Klibanov AL, Kaul S, Lindner JR. Assessment of endogenous and therapeutic arteriogenesis by contrast ultrasound molecular imaging of integrin expression. Circulation. 2005;111(24):3248–54.  https://doi.org/10.1161/circulationaha.104.481515.CrossRefPubMedGoogle Scholar
  53. 53.
    Chadderdon SM, Belcik JT, Bader L, Kirigiti MA, Peters DM, Kievit P, Grove KL, Lindner JR. Proinflammatory endothelial activation detected by molecular imaging in obese nonhuman primates coincides with onset of insulin resistance and progressively increases with duration of insulin resistance. Circulation. 2014;129(4):471–8.  https://doi.org/10.1161/circulationaha.113.003645.CrossRefPubMedGoogle Scholar
  54. 54.
    Belcik JT, Davidson BP, Foster T, Qi Y, Zhao Y, Peters D, Lindner JR. Contrast-enhanced ultrasound assessment of impaired adipose tissue and muscle perfusion in insulin-resistant mice. Circ Cardiovasc Imaging. 2015;8(4)  https://doi.org/10.1161/circimaging.114.002684.
  55. 55.
    Clerk LH, Vincent MA, Barrett EJ, Lankford MF, Lindner JR. Skeletal muscle capillary responses to insulin are abnormal in late-stage diabetes and are restored by angiotensin-converting enzyme inhibition. Am J Physiol Endocrinol Metab. 2007;293(6):E1804–9.  https://doi.org/10.1152/ajpendo.00498.2007.CrossRefPubMedGoogle Scholar
  56. 56.
    Hu D, Remash D, Russell RD, Greenaway T, Rattigan S, Squibb KA, Jones G, Premilovac D, Richards SM, Keske MA. Impairments in adipose tissue microcirculation in type 2 diabetes mellitus assessed by real-time contrast-enhanced ultrasound. Circ Cardiovasc Imaging. 2018;11(4):e007074.  https://doi.org/10.1161/circimaging.117.007074.CrossRefPubMedGoogle Scholar
  57. 57.
    Belcik JT, Mott BH, Xie A, Zhao Y, Kim S, Lindner NJ, Ammi A, Linden JM, Lindner JR. Augmentation of limb perfusion and reversal of tissue ischemia produced by ultrasound-mediated microbubble cavitation. Circ Cardiovasc Imaging. 2015;8(4)  https://doi.org/10.1161/circimaging.114.002979.
  58. 58.
    Belcik JT, Davidson BP, Xie A, Wu MD, Yadava M, Qi Y, Liang S, Chon CR, Ammi AY, Field J, Harmann L, Chilian WM, Linden J, Lindner JR. Augmentation of muscle blood flow by ultrasound cavitation is mediated by ATP and purinergic signaling. Circulation. 2017;135(13):1240–52.  https://doi.org/10.1161/circulationaha.116.024826.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Knight Cardiovascular Institute, Oregon Health & Science UniversityPortlandUSA

Personalised recommendations