Advertisement

Imaging Needs for Development of Novel Therapeutics in PAD

  • Elona Rrapo Kaso
  • Brian H. AnnexEmail author
Chapter

Abstract

Peripheral arterial disease is now appreciated to be a common complication of systemic atherosclerosis. Reduced blood flow to the legs from PAD causes an array of leg symptoms, and these patients are at high risk for stroke and heart attack. While the clinical problems from PAD result from reduced blood flow to the legs, advances in therapies in this field have been limited. Indeed, the last medication approved for improvement of leg symptoms in PAD was nearly 20 years ago. The future for PAD will require agents being identified and tested via novel imaging techniques that are linked to the pathophysiological progression of PAD and measure significant endpoints that are more accurate, practical, and reproducible. Here a discussion will focus on new imaging techniques that may allow us to measure response to novel therapies and correlate with improvement in clinical outcomes in PAD.

Keywords

Vascular disease Atherosclerosis Inflammation Angiogenesis Myocytes Revascularization 

References

  1. 1.
    Fowkes FG, Rudan D, Rudan I, Aboyans V, Denenberg JO, McDermott MM, Norman PE, Sampson UK, Williams LJ, Mensah GA, Criqui MH. Comparison of global estimates of prevalence and risk factors for peripheral artery disease in 2000 and 2010: a systematic review and analysis. Lancet. 2013;382:1329–40.CrossRefGoogle Scholar
  2. 2.
    Roth GA, et al. Global, Regional, and National Burden of Cardiovascular Diseases for 10 Causes, 1990 to 2015. J Am Coll Cardiol. 2017;70:1–25.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    McDermott MM, Kerwin DR, Liu K, Martin GJ, O’Brien E, Kaplan H, Greenland P. Prevalence and significance of unrecognized lower extremity peripheral arterial disease in general medicine practice. J Gen Intern Med. 2001;16:384–90.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Belch JJ, Topol EJ, Agnelli G, Bertrand M, Califf RM, Clement DL, Creager MA, Easton JD, Gavin JR 3rd, Greenland P, Hankey G, Hanrath P, Hirsch AT, Meyer J, Smith SC, Sullivan F, Weber MA. Critical issues in peripheral arterial disease detection and management: a call to action. Arch Intern Med. 2003;163:884–92.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Norgren L, Hiatt WR, Dormandy JA, Nehler MR, Harris KA, Fowkes FG, et al. Inter-society consensus for the Management of Peripheral Arterial Disease (TASC II). Eur J Vasc Endovasc Surg. 2007;33(Suppl 1):S1–75.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Hirsch AT, Hartman L, Town RJ, Virnig BA. National health care costs of peripheral arterial disease in the Medicare population. Vasc Med. 2008;13:209–15.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    McDermott MM, Liu K, Greenland P, Guralnik JM, Criqui MH, Chan C, Pearce WH, Schneider JR, Ferrucci L, Celic L, Taylor LM, Vonesh E, Martin GJ, Clark E. Functional decline in peripheral arterial disease: associations with the ankle brachial index and leg symptoms. JAMA. 2004;292:453–61.CrossRefGoogle Scholar
  8. 8.
    Hiatt WR. Pharmacologic therapy for peripheral arterial disease and claudication. J Vasc Surg. 2002;36:1283–91.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Hirsch AT, Haskal ZJ, Hertzer NR, Bakal CW, Creager MA, Halperin JL, et al. ACC/AHA 2005 Practice Guidelines for the management of patients with peripheral arterial disease (lower extremity, renal, mesenteric, and abdominal aortic): a collaborative report from the American Association for Vascular Surgery/Society for Vascular Surgery, Society for Cardiovascular Angiography and Interventions, Society for Vascular Medicine and Biology, Society of Interventional Radiology, and the ACC/AHA Task Force on Practice Guidelines (Writing Committee to Develop Guidelines for the Management of Patients With Peripheral Arterial Disease): endorsed by the American Association of Cardiovascular and Pulmonary Rehabilitation; National Heart, Lung, and Blood Institute; Society for Vascular Nursing; TransAtlantic Inter-Society Consensus; and Vascular Disease Foundation. Circulation. 2006;113:e463–654.CrossRefGoogle Scholar
  10. 10.
    Bauer TA, Regensteiner JG, Brass EP, Hiatt WR. Oxygen uptake kinetics during exercise are slowed in patients with peripheral arterial disease. J Appl Physiol. 1999;87(2):809–16.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    McDermott MM, Mehta S, Liu K, et al. Leg symptoms, the ankle-brachial index, and walking ability in patients with peripheral arterial disease. J Gen Intern Med. 1999;14(3):173–81.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Belch JJ, Topol EJ, Agnelli G, et al. Prevention of atherothrombotic disease network. Critical issues in peripheral arterial disease detection and management: a call to action. Arch Intern Med. 2003;163:884–92.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Ouriel K. Peripheral arterial disease. Lancet. 2001;358:1257–64.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Mohler, et al. Cholesterol reduction with atorvastatin improves walking distance in patients with peripheral arterial disease. Circulation. 2003;108:1481–6.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Ahimastos AA, Walker PJ, Askew C, Leicht A, Pappas E, Blombery P, et al. Effect of ramipril on walking times and quality of life among patients with peripheral artery disease and intermittent claudication: a randomized controlled trial. JAMA J Am Med Assoc. 2013;309(5):453–60.CrossRefGoogle Scholar
  16. 16.
    Pollak AW, Norton PT, Kramer CM. Multimodality imaging of the lower extremity peripheral arterial disease. Circ: Cardiov Inag. 2012;5:797–807.Google Scholar
  17. 17.
    Creager MA, Olin JW, Belch JJ, Moneta GL, Henry TD, Rajagopalan S, Annex BH, Hiatt WR. Effect of hypoxia-inducible factor −1 alpha gene therapy on walking performance in patients with intermittent claudication. Circulation. 2011;124:1765–73.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Feinglass J, McCarthy WJ, Slavensky R, Manheim LM, Martin GJ. Effect of lower extremity blood pressure on physical functioning in patients who have intermittent claudication. The Chicago Claudication Outcomes research group. J Vasc Surg. 1996;24:503–11.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Long J, Modrall JG, Parker BJ, Swann A, Welborn MB III, Anthony T. Correlation between ankle-brachial index, symptoms, and health-related quality of life in patients with peripheral vascular disease. J Vasc Surg. 2004;39:723–7.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Gardner AW, Montgomery PS, Killewich LA. Natural history of physical function in older men with intermittent claudication. J Vasc Surg. 2004;40:73–8.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Narula N, Dannenberg AJ, Olin JW, Bhatt DL, et al. Pathology of peripheral artery disease in patients with critical limb ischemia. J Am Coll Cardiol. 2018;72(18):2152–63.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Gokce N, Keaney JF Jr, Hunter LM, et al. Predictive value of non-invasively-determined endothelial dysfunction for long-term cardiovascular events in patients with peripheral vascular disease. J Am Coll Cardiol. 2003;41:1769–75.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Gokce N, Keaney JF Jr, Menzoian JO, et al. Risk stratification for postoperative cardiovascular events via noninvasive assessment of endothelial function. Circulation. 2002;105:1567–72.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Brevetti G, Silvestro A, Schiano V, Chiariello M. Endothelial dysfunction and cardiovascular risk prediction in peripheral arterial disease: additive value of flow-mediated dilation to ankle – brachial pressure index. Circulation. 2003;108:2093–8.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Kiani S, Aasen JG, Holbrook M, Khemka A, Sharmeen F, LeLeiko RM, et al. Peripheral artery disease is associated with severe impairment of vascular function. Vasc Med. 2013;18:72–8.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Steg PG, Bhatt DL, Wilson PW, et al. One-year cardiovascular event rates in outpatients with atherothrombosis. JAMA. 2007;297:1197–206.PubMedCrossRefGoogle Scholar
  27. 27.
    Stokes J III, Kannel WB, Wolf PA, Cupples LA, D’Agostino RB. The relative importance of selected risk factors for various manifestations of cardiovascular disease among men and women from 35 to 64 years old: 30 years of follow-up in the Framingham Study. Circulation. 1987;75:V65–73.PubMedGoogle Scholar
  28. 28.
    Berger JS, Hochman J, Lobach I, Adelman MA, Riles TS, Rockman CB. Modifiable risk factor burden and the prevalence of peripheral artery disease in different vascular territories. J Vasc Surg. 2013;58:673–81.PubMedCrossRefGoogle Scholar
  29. 29.
    Sigvant B, Lundin F, Wahlberg E. The risk of disease progression in peripheral arterial disease is higher than expected: a meta-analysis of mortality and disease progression in peripheral arterial disease. Eur J Vasc Endovasc Surg. 2016;51(3):395–403.PubMedCrossRefGoogle Scholar
  30. 30.
    Ryan TE, et al. Extensive skeletal muscle cell mitochondriopathy distinguishes critical limb ischemia patients from claudicants. JCI Insight. 2018;3(21):e123235.PubMedCentralCrossRefGoogle Scholar
  31. 31.
    Hyvarinen S. Arteriographic findings of claudication patients. Ann Clin Res. 1984;16:1–45.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Lindbom A. Arteriosclerosis and arterial thrombosis in the lower limb: a roentgenological study. Acta Radiol. 1950;80(Suppl):1–80.Google Scholar
  33. 33.
    McDermott MM, Liu K, Carroll TJ, et al. Superficial femoral artery plaque and functional performance in peripheral arterial disease: walking and leg circulation study (WALCS III). JACC Cardiovasc Imaging. 2011;4(7):730–9.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Burke AP, Farb A, Malcom GT, Liang YH, Smialek J, Virmani R. Coronary risk factors and plaque morphology in men with coronary disease who died suddenly. N Engl J Med. 1997;336:1276–82.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    van Oostrom O, Velema E, Schoneveld AH, et al. Age-related changes in plaque composition: a study in patients suffering from carotid artery stenosis. Cardiovasc Pathol. 2005;14:126–34.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Soor GS, Vukin I, Leong SW, Oreopoulos G, Butany J. Peripheral vascular disease: who gets it and why? A histomorphological analysis of 261 arterial segments from 58 cases. Pathology. 2008;40:385–91.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    O’Neill WC, Han KH, Schneider TM, Hennigar RA. Prevalence of non-atheromatous lesions in peripheral artery disease. Atheroscler Thromb Vasc Biol. 2015;35:439–47.CrossRefGoogle Scholar
  38. 38.
    Robbins JL, Jones WS, Duscha BD, Allen JD, Kraus WE, Regensteiner JG, Hiatt WR, Annex BH. Relationship between leg muscle capillary density and peak hyperemic blood flow with endurance capacity in peripheral artery disease. J Appl Physiol. 2011;111:81–6.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Caradu C, Couffinhal T, Chapouly C, Guimbal S, et al. Restoring endothelial function by Targeting Desert hedgehog downstream of Klf2 improves critical limb ischemia in adults. Circ Res. 2018;123:1053–65.PubMedCrossRefGoogle Scholar
  40. 40.
    Miralles JD, Gonzalez AF, Casariego CV, Garcia FA. Onset of peripheral arterial disease: Role of endothlin in endothelial dysfunction. Interactive CardioVascular Thoracisc Surg. 2010;10:760–5.Google Scholar
  41. 41.
    Lorbeer R, Grotz A, Dörr M, et al. Reference values of vessel diameters, stenosis prevalence, and arterial variations of the lower limb arteries in a male population sample using contrast-enhanced MR angiography. PLoS One. 2018;13(6):e0197559.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Khan ZA, Khan MA, Altaf FM, et al. Diameter of the dorsalis pedis artery and its clinical relevance. J Dent Med Sci. 2016;15:129–33.Google Scholar
  43. 43.
    Gardner AW, Poehlman ET. Exercise rehabilitation programs for the treatment of claudication pain: a meta-analysis. JAMA. 1995;274:975–80.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Leng GC, Fowler B, Ernst E. Exercise for intermittent claudication. Cochrane Database Syst Rev. 2000;2:CD000990.Google Scholar
  45. 45.
    Lundgren F, Dahllof AG, Lundholm K, Schersten T, Volkmann R. Intermittent claudication—surgical reconstruction or physical training? A prospective randomized trial of treatment efficiency. Ann Surg. 1989;209:346–55.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Regensteiner JG. Exercise in the treatment of claudication: assessment and treatment of functional impairment. Vasc Med. 1997;2:238–42.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Robeer GG, Brandsma JW, van den Heuvel SP, Smit B, Oostendorp RA, Wittens CH. Exercise therapy for intermittent claudication: a review of the quality of randomised clinical trials and evaluation of predictive factors. Eur J Vasc Endovasc Surg. 1998;15:36–43.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Regensteiner JG, Steiner JF, Hiatt WR. Exercise training improves functional status in patients with peripheral arterial disease. J Vasc Surg. 1996;23:104–15.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Clifford PC, Davies PW, Hayne JA, Baird RN. Intermittent claudication: is a supervised exercise class worth while? Br Med J. 1980;280:1503–5.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Alpert JS, Larsen OA, Lassen NA. Exercise and intermittent claudication: blood flow in the calf muscle during walking studied by the xenon-133 clearance method. Circulation. 1969;39:353–9.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Gardner AW, Katzel LI, Sorkin JD, et al. Improved functional outcomes following exercise rehabilitation in patients with intermittent claudication. J Gerontol A Biol Sci Med Sci. 2000;55:M570–7.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Duscha BD, et al. Angiogenesis in skeletal muscle precede improvements in peak oxygen uptake in peripheral artery disease patients. Arterioscler Thromb Vasc Biol. 2011;31:2742–8.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Gardner AW, Katzel LI, Sorkin JD, et al. Exercise rehabilitation improves functional outcomes and peripheral circulation in patients with intermittent claudication: a randomized controlled trial. J Am Geriatr Soc. 2001;49:755–62.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Hiatt WR, Regensteiner JG, Hargarten ME, Wolfel EE, Brass EP. Benefit of exercise conditioning for patients with peripheral arterial disease. Circulation. 1990;81:602–9.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Johnson EC, Voyles WF, Atterbom HA, Pathak D, Sutton MF, Greene ER. Effects of exercise training on common femoral artery blood flow in patients with intermittent claudication. Circulation. 1989;80(Suppl III):III- 59–I-72.Google Scholar
  56. 56.
    Lundgren F, Dahllof AG, Schersten T, Bylund-Fellenius AC. Muscle enzyme adaptation in patients with peripheral arterial insufficiency: spontaneous adaptation, effect of different treatments and consequences on walking performance. Clin Sci (Lond). 1989;77:485–93.CrossRefGoogle Scholar
  57. 57.
    Szuba A, Oka RK, Harada R, et al. Limb hemodynamics are not predictive of functional capacity in patients with PAD. Vasc Med. 2006;11:155–63.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Lloyd PG, Yang HT, Terjung RL. Arteriogenesis and angiogenesis in rat ischemic hindlimb: role of nitric oxide. Am J Physiol Heart Circ Physiol. 2001;281:H2528–38.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Wei K, Jayaweera AR, Firoozan S, Linka A, Skyba DM, Kaul S. Quantification of myocardial blood flow with ultrasound-induced destruction of microbubbles administered as a constant venous infusion. Circulation. 1998;97:473–83.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Wei K, Skyba DM, Firschke C, Jayaweera AR, Lindner JR, Kaul S. Interactions between microbubbles and ultrasound: in vitro and in vivo observations. J Am Coll Cardiol. 1997;29:1081–8.PubMedCrossRefGoogle Scholar
  61. 61.
    Duerschmied D, Maletzki P, Freund G. Analysis of muscle microcirculation in advanced diabetes mellitus by contrast enhanced ultrasound. Diabetes Res Clin Pract. 2008;81:88–92.PubMedCrossRefGoogle Scholar
  62. 62.
    Duerschmied D, Olson L, Olschewski M, Rossknecht A, Freund G, Bode C, et al. Contrast ultrasound perfusion imaging of lower extremities in peripheral arterial disease: a novel diagnostic method. Eur Heart J. 2006;27:310–5.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Heinonen I, Kemppainen J, Kaskinoro K, Peltonen JE, Borra R, Lindroos MM, et al. Comparison of exogenous adenosine and voluntary exercise on human skeletal muscle perfusion and perfusion heterogeneity. J Appl Physiol. 2010;108(2):378–86.PubMedCrossRefGoogle Scholar
  64. 64.
    Kundi R, Prior SJ, Addison O, et al. Contrast-enhanced ultrasound reveals exercise-induced perfusion deficits in Claudicants. J Vasc Endovasc Surg. 2017;2:1.CrossRefGoogle Scholar
  65. 65.
    Askew CD, Green S, Walker PJ, Kerr GK, Green AA, Williams AD, Febbraio MA. Skeletal muscle phenotype is associated with exercise tolerance in patients with peripheral arterial disease. J Vasc Surg. 2005;41:802–7.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Regensteiner JG, Wolfel EE, Brass EP, Carry MR, Ringel SP, Hargarten ME, Stamm ER, Hiatt WR. Chronic changes in skeletal muscle histology and function in peripheral arterial disease. Circulation. 1993;87:413–21.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    van Royen N, Piek JJ, Buschmann I, Hoefer I, Voskuil M, Schaper W. Stimulation of arteriogenesis; a new concept for the treatment of arterial occlusive disease. Cardiovasc Res. 2001;49:543–53.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Annex BH. Therapeutic angiogenesis for critical limb ischemia. Nat Rev Cardiol. 2013;10:387–96.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Ryu JC, Davidson BP, Xie A, Qi Y, Zha D, Belcik JT, et al. Molecular imaging of the paracrine proangiogenic effects of progenitor cell therapy in limb ischemia. Circulation. 2013;127:710–9.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Pascotto M, Leong-Poi H, Kaufmann B, Allrogen A, Charalampidis D, Kerut EK, et al. Assessment of ischemia-induced microvascular remodeling using contrast-enhanced ultrasound vascular anatomic mapping. J Am Soc Echocardiogr. 2007;20:1100–8.CrossRefGoogle Scholar
  71. 71.
    Iyer SR, Annex BH. Therapeutic angiogenesis for peripheral artery disease. J Am Coll Cardiol Basic Trans Sci. 2017;2:503–12.Google Scholar
  72. 72.
    Frumkin LR. The pharmacologic treatment of pulmonary hypertension. Pharmacol Rev. 2012;64:583–620.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Luyt CE, Lepailleur-Enouf D, Gaultier CJ, Valdenaire O, Steg G, Michel JB. Involvement of the endothelin system in experimental critical hind limb ischemia. Mol Med. 2000;6:947–56.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Grenon SM, Chong K, Alley H, Nosova E, Gasper W, Hiramoto J, Boscardin WJ, Owens CD. Walking disability in patients with peripheral artery disease is associated with arterial endothelial function. J Vasc Surg. 2014;59:1025–34.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Payvandi L, Dyer A, McPherson D, et al. Physical activity during daily life and brachial artery flow-mediated dilation in peripheral arterial disease. Vasc Med. 2009;14:193–201.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    McDermott MM, Ades P, Guralnik JM, et al. Treadmill exercise and resistance training in patients with peripheral arterial disease with and without intermittent claudication: a randomized controlled trial. JAMA. 2009;301:165–74.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Hiatt WR, Nawaz D, Brass EP. Carnitine metabolism during exercise in patients with peripheral vascular disease. J Appl Physiol. 1987;62:2383–7.PubMedCrossRefGoogle Scholar
  78. 78.
    Hiatt WR, Wolfel EE, Regensteiner JG, Brass EP. Skeletal muscle carnitine metabolism in patients with unilateral peripheral arterial disease. J Appl Physiol. 1992;73:346–53.PubMedCrossRefGoogle Scholar
  79. 79.
    Anderson JD, Epstein FH, Meyer CH, Hagspiel KH, Wang H, Berr SS, Harthun N, Weltman A, Dimaria JD, West AM, Kramer CM. Multifactorial determinants of functional capacity in peripheral arterial disease: uncoupling of calf muscle perfusion and metabolism. J Am Coll Cardiol. 2009;54:628–35.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Isbell DC, Meyer CH, Rogers WJ, et al. Reproducibility and reliability of atherosclerotic plaque volume measurements in peripheral arterial disease with cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2007;9(1):71–6.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Anand SS, Bosch J, Eikelboom JW, et al. Rivaroxaban with or without aspirin in patients with stable peripheral or carotid artery disease: an international, randomised, double-blind, placebo-controlled trial. Lancet. 2018;391:219–29.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Lindner JR, Womack L, Barrett EJ, Weltman J, Price W, Harthun NL, et al. Limb stress-rest perfusion imaging with contrast ultrasound for the assessment of peripheral arterial disease severity. JACC Cardiovasc Imaging. 2008;1:343–50.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Amarteifio E, Weber MA, Wormsbecher S, Demirel S, Krakowski-Roosen H, Jores A, et al. Dynamic contrast-enhanced ultrasound for assessment of skeletal muscle microcirculation in peripheral arterial disease. Investig Radiol. 2011;46:504–8.CrossRefGoogle Scholar
  84. 84.
    Epah J, Pálfi K, Dienst FL, Malacarne PF, Bremer R, Salamon M, Kumar S, Jo H, Schürmann C, Brandes RP. 3D imaging and quantitative analysis of vascular networks: a comparison of ultramicroscopy and micro-computed tomography. Theranostics. 2018;8(8):2117–33.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Simons M. Chapter 14: assessment of arteriogenesis. Methods Enzymol. 2008;445:331–42.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Wagner S, Helisch A, Ziegelhoeffer T, Bachmann G, Schaper W. Magnetic resonance angiography of collateral vessels in a murine femoral artery ligation model. NMR Biomed. 2004;17:21–7.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Helisch A, Wagner S, Khan N, et al. Impact of mouse strain differences in innate hindlimb collateral vasculature. Arterioscler Thromb Vasc Biol. 2006;26:520–6.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Moraes F, Paye J, Mac Gabhann F, Zhuang ZW, Zhang J, Lanahan AA, Simons M. Endothelial cell-dependent regulation of arteriogenesis. Circ Res. 2013;113:1076–86.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Yu J, et al. Super-resolution ultrasound imaging method for microvascular in vivo with a high temporal accuracy. Sci Rep. 2018;8:13918.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    McDermott MM, et al. Collateral vessel number, plaque burden, and functional decline in peripheral artery disease. Vasc Med. 2014;19(4):281–8.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Wecksell MB, Winchester PA, Bush HL, et al. Cross-sectional pattern of collateral vessels in patients with superficial femoral artery occlusion. Investig Radiol. 2001;36:422–9.CrossRefGoogle Scholar
  92. 92.
    Baumgartner I, Thoeny HC, Kummer O. Leg ischemia: assessment with MR angiography and spectroscopy. Radiology. 2005;234:833–41.PubMedCrossRefGoogle Scholar
  93. 93.
    Keeling AN, Carroll TJ, McDermott MM, Liu K, Liao Y, Farrelly CT, et al. Clinical correlates of size and number of collateral vessels in peripheral artery disease. Vasc Med. 2012;17(4):223–30.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Perin, et al. Evaluation of cell therapy of exercise performance and limb perfusion in peripheral artery disease. Circulation. 2017;135:1417–28.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Hiatt WR, Armstrong EJ, Larson CJ, Brass EP. Pathogenesis of the limb manifestations and exercise limitations in peripheral artery disease. Circ Res. 2015;116:1527–39.PubMedCrossRefGoogle Scholar
  96. 96.
    Capoccia BJ, Robson DL, Levac KD, Maxwell DJ, Hohm SA, Neelamkavil MJ, Bell GI, Xenocostas A, Link DC, Piwnica-Worms D, Nolta JA, Hess DA. Revascularization of ischemic limbs after transplantation of human bone marrow cells with high aldehyde dehydrogenase activity. Blood. 2009;113:5340–51.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Ma N, Ladilov Y, Moebius JM, et al. Intramyocardial delivery of human CD133+ cells in a SCID mouse cryoinjury model: bone marrow vs cord blood-derived cells. Cardiovasc Res. 2006;71:158–69.PubMedCrossRefGoogle Scholar
  98. 98.
    Sheikh AY, Lin SA, Cao F, et al. Molecular imaging of bone marrow mononuclear cell homing and engraftment in ischemic myocardium. Stem Cells. 2007;25:2677–84.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Pollak AW, Meyer CH, Epstein FH, Jiji RS, Hunter JR, Dimaria JM, Christopher JM, Kramer CM. Arterial spin labeling MR imaging reproducibly measures peak-exercise calf muscle perfusion: a study in patients with peripheral arterial disease and healthy volunteers. JACC Cardiovasc Imaging. 2012;5:1224–30.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Wu WC, Mohler E 3rd, Ratcliffe SJ, Wehrli FW, Detre JA, Floyd TF. Skeletal muscle microvascular flow in progressive peripheral artery disease: assessment with continuous arterial spin-labeling perfusion magnetic resonance imaging. J Am Coll Cardiol. 2009;53:2372–7.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Ledermann HP, Schulte AC, Heidecker HG, Aschwanden M, Jäger KA, Scheffler K, Steinbrich W, Bilecen D. Blood oxygenation level-dependent magnetic resonance imaging of the skeletal muscle in patients with peripheral arterial occlusive disease. Circulation. 2006;113:2929–35.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Jacobi B, Bongartz G, Partovi S, et al. Skeletal muscle BOLD MRI: from underlying physiological concepts to its usefulness in clinical conditions. J Magn Reson Imaging. 2012;35(6):1253–65.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Duerschmied D, Zhou Q, Rink E, Harder D, Freund G, Olschewski M, Bode C, Hehrlein C. Simplified contrast ultrasound accurately reveals muscle perfusion deficits and reflects collateralization in PAD. Atherosclerosis. 2009;202:505–12.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Leong-Poi H, Kuliszewski MA, Lekas M, Sibbald M, Teichert-Kuliszewska K, Klibanov AL, et al. Therapeutic arteriogenesis by ultrasound-mediated vegf165 plasmid gene delivery to chronically ischemic skeletal muscle. Circ Res. 2007;101:295–303.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Leong-Poi H, Christiansen J, Heppner P, Lewis CW, Klibanov AL, Kaul S, et al. Assessment of endogenous and therapeutic arteriogenesis by contrast ultrasound molecular imaging of integrin expression. Circulation. 2005;111:3248–54.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Duerschmied D, Maletzki P, Freund G, Olschewski M, Bode C, Hehrlein C. Success of arterial revascularization determined by contrast ultrasound muscle perfusion imaging. J Vasc Surg. 2010;52:1531–6.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Brass EP, Hiatt WR, Gardner AW, Hoppel CL. Decreased NADH dehydrogenase and ubiquinol-cytochrome c oxidoreductase in peripheral arterial disease. Am J Physiol Heart Circ Physiol. 2001;280:H603–9.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Hiatt WR, Regensteiner JG, Wolfel EE, Carry MR, Brass EP. Effect of exercise training on skeletal muscle histology and metabolism in peripheral arterial disease. J Appl Physiol. 1996;81:780–8.PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Hou XY, Green S, Askew CD, Barker G, Green A, Walker PJ. Skeletal muscle mitochondrial ATP production rate and walking performance in peripheral arterial disease. Clin Physiol Funct Imaging. 2002;22:226–32.PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    McDermott MM, Ferrucci L, Guralnik JM, Tian L, Green D, Liu K, Tan J, Liao Y, Pearce WH, Schneider JR, Ridker P, Rifai N, Hoff F, Criqui MH. Elevated levels of inflammation, d-dimer, and homocysteine are associated with adverse calf muscle characteristics and reduced calf strength in peripheral arterial disease. J Am Coll Cardiol. 2007;50:897–905.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    McGuigan MR, Bronks R, Newton RU, Sharman MJ, Graham JC, Cody DV, Kraemer WJ. Muscle fiber characteristics in patients with peripheral arterial disease. Med Sci Sports Exerc. 2001;33:2016–21.PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Steinacker JM, Opitz-Gress A, Baur S, Lormes W, Bolkart K, Sunder-Plassmann L, Liewald F, Lehmann M, Liu Y. Expression of myosin heavy chain isoforms in skeletal muscle of patients with peripheral arterial occlusive disease. J Vasc Surg. 2000;31:443–9.PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Mitchell RG, Duscha BD, Robbins JL, Redfern SI, Chung J, Bensimhon DR, Kraus WE, Hiatt WR, Regensteiner JG, Annex BH. Increased levels of apoptosis in gastrocnemius skeletal muscle in patients with peripheral arterial disease. Vasc Med. 2007;12:285–90.PubMedCrossRefGoogle Scholar
  114. 114.
    McDermott MM, Ferrucci L, Guralnik J, Tian L, Liu K, Hoff F, Liao Y, Criqui MH. Pathophysiological changes in calf muscle predict mobility loss at 2-year follow-up in men and women with peripheral arterial disease. Circulation. 2009;120:1048–55.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Cardiovascular MedicineUniversity of VirginiaCharlottesvilleUSA
  2. 2.Department of MedicineMedical College of GeorgiaAugustaUSA

Personalised recommendations