Advertisement

Computed Tomography Angiography (CTA)

  • Klaus D. HagspielEmail author
  • Patrick T. Norton
Chapter

Abstract

Multidetector CTA (MDCTA) of the peripheral arteries has high accuracy for detection of steno-occlusive diseases when compared with DSA. Its advantages over DSA include minimal invasiveness, reduced volume of contrast material, shorter scan times, and fast data acquisition. Other advantages include three-dimensional (3D) volumetric data analysis and display, unlike DSA which only provides a luminogram, visualization of the vessel walls, and extravascular tissues. Furthermore CTA is more reliable than MRA when assessing patency of arteries with stents and has higher spatial resolution. This chapter reviews the role of CTA for the evaluation and posttreatment follow-up of patients with PAD involving the upper and lower extremities.

Keywords

Computed tomography angiography CTA Peripheral arterial disease Multidetector computed tomography angiography Multidetector CT Scanners MDCT 

References

  1. 1.
    Ota H, Takase K, Igarashi K, et al. MDCT compared with digital subtraction angiography for assessment of lower extremity arterial occlusive disease: importance of reviewing cross-sectional images. AJR Am J Roentgenol. 2004;182(1):201–9.  https://doi.org/10.2214/ajr.182.1.1820201.CrossRefPubMedGoogle Scholar
  2. 2.
    Writing Committee Members, Gerhard-Herman MD, Gornik HL, et al. 2016 AHA/ACC guideline on the management of patients with lower extremity peripheral artery disease: executive summary. Vasc Med. 2017;22(3):NP1–NP43.  https://doi.org/10.1177/1358863X17701592.CrossRefGoogle Scholar
  3. 3.
    Albrecht T, Foert E, Holtkamp R, et al. 16-MDCT angiography of aortoiliac and lower extremity arteries: comparison with digital subtraction angiography. AJR Am J Roentgenol. 2007;189(3):702–11. doi: 189/3/702 [pii].CrossRefGoogle Scholar
  4. 4.
    Meyer BC, Werncke T, Hopfenmuller W, Raatschen HJ, Wolf KJ, Albrecht T. Dual energy CT of peripheral arteries: effect of automatic bone and plaque removal on image quality and grading of stenoses. Eur J Radiol. 2008;68(3):414–22.  https://doi.org/10.1016/j.ejrad.2008.09.016.CrossRefPubMedGoogle Scholar
  5. 5.
    Willmann JK, Wildermuth S. Multidetector-row CT angiography of upper- and lower-extremity peripheral arteries. Eur Radiol. 2005;15(Suppl 4):D3–9.CrossRefGoogle Scholar
  6. 6.
    Willmann JK, Mayer D, Banyai M, et al. Evaluation of peripheral arterial bypass grafts with multi-detector row CT angiography: comparison with duplex US and digital subtraction angiography. Radiology. 2003;229(2):465–74.  https://doi.org/10.1148/radiol.2292021123.CrossRefPubMedGoogle Scholar
  7. 7.
    Rubin GD, Shiau MC, Schmidt AJ, et al. Computed tomographic angiography: historical perspective and new state-of-the-art using multi detector-row helical computed tomography. J Comput Assist Tomogr. 1999;23(Suppl 1):S83–90.PubMedGoogle Scholar
  8. 8.
    Prokop M. Multislice CT angiography. Eur J Radiol. 2000;36(2):86–96.CrossRefGoogle Scholar
  9. 9.
    Ambrose J, Hounsfield G. Computerized transverse axial tomography. Br J Radiol. 1973;46(542):148–9.PubMedGoogle Scholar
  10. 10.
    Kalender WA, Seissler W, Klotz E, Vock P. Spiral volumetric CT with single-breath-hold technique, continuous transport, and continuous scanner rotation. Radiology. 1990;176(1):181–3.CrossRefGoogle Scholar
  11. 11.
    Kalender WA, Polacin A. Physical performance characteristics of spiral CT scanning. Med Phys. 1991;18(5):910–5.CrossRefGoogle Scholar
  12. 12.
    Hu H, He HD, Foley WD, Fox SH. Four multidetector-row helical CT: image quality and volume coverage speed. Radiology. 2000;215(1):55–62.CrossRefGoogle Scholar
  13. 13.
    Klingenbeck-Regn K, Schaller S, Flohr T, Ohnesorge B, Kopp AF, Baum U. Subsecond multi-slice computed tomography: basics and applications. Eur J Radiol. 1999;31(2):110–24.CrossRefGoogle Scholar
  14. 14.
    Fleischmann D, Chin AS, Molvin L, Wang J, Hallett R. Computed tomography angiography: a review and technical update. Radiol Clin N Am. 2016;54(1):1–12.  https://doi.org/10.1016/j.rcl.2015.09.002.CrossRefPubMedGoogle Scholar
  15. 15.
    Rubin GD, Walker PJ, Dake MD, et al. Three-dimensional spiral computed tomographic angiography: an alternative imaging modality for the abdominal aorta and its branches. J Vasc Surg. 1993;18(4):656–64; discussion 665.CrossRefGoogle Scholar
  16. 16.
    Liang Y, Kruger RA. Dual-slice spiral versus single-slice spiral scanning: comparison of the physical performance of two computed tomography scanners. Med Phys. 1996;23(2):205–20.CrossRefGoogle Scholar
  17. 17.
    Petersilka M, Bruder H, Krauss B, Stierstorfer K, Flohr TG. Technical principles of dual source CT. Eur J Radiol. 2008;68(3):362–8.  https://doi.org/10.1016/j.ejrad.2008.08.013.CrossRefPubMedGoogle Scholar
  18. 18.
    Johnson TR, Krauss B, Sedlmair M, et al. Material differentiation by dual energy CT: initial experience. Eur Radiol. 2007;17(6):1510–7.  https://doi.org/10.1007/s00330-006-0517-6.CrossRefPubMedGoogle Scholar
  19. 19.
    Johnson PT, Fishman EK. Computed tomography angiography of the renal and mesenteric vasculature: concepts and applications. Semin Roentgenol. 2011;46(2):115–24.  https://doi.org/10.1053/j.ro.2010.08.001.CrossRefPubMedGoogle Scholar
  20. 20.
    Tran DN, Straka M, Roos JE, Napel S, Fleischmann D. Dual-energy CT discrimination of iodine and calcium: experimental results and implications for lower extremity CT angiography. Acad Radiol. 2009;16(2):160–71.  https://doi.org/10.1016/j.acra.2008.09.004.CrossRefPubMedGoogle Scholar
  21. 21.
    Hagspiel KD. Increasing role of dual-energy CT in noninvasive vascular imaging. J Vasc Interv Radiol. 2017;28(9):1267–8. doi: S1051-0443(17)30662-0 [pii].CrossRefGoogle Scholar
  22. 22.
    Wichmann JL, Gillott MR, De Cecco CN, et al. Dual-energy computed tomography angiography of the lower extremity runoff: impact of noise-optimized virtual monochromatic imaging on image quality and diagnostic accuracy. Investig Radiol. 2016;51(2):139–46.  https://doi.org/10.1097/RLI.0000000000000216.CrossRefGoogle Scholar
  23. 23.
    Fleischmann D, Kamaya A. Optimal vascular and parenchymal contrast enhancement: the current state of the art. Radiol Clin N Am. 2009;47(1):13–26.  https://doi.org/10.1016/j.rcl.2008.10.009.CrossRefPubMedGoogle Scholar
  24. 24.
    Bae KT, Heiken JP, Brink JA. Aortic and hepatic peak enhancement at CT: effect of contrast medium injection rate – pharmacokinetic analysis and experimental porcine model. Radiology. 1998;206(2):455–64.  https://doi.org/10.1148/radiology.206.2.9457200.CrossRefPubMedGoogle Scholar
  25. 25.
    Zeman RK, Silverman PM, Vieco PT, Costello P. CT angiography. AJR Am J Roentgenol. 1995;165(5):1079–88.CrossRefGoogle Scholar
  26. 26.
    Napoli A, Fleischmann D, Chan FP, et al. Computed tomography angiography: state-of-the-art imaging using multidetector-row technology. J Comput Assist Tomogr. 2004;28(Suppl 1):S32–45. doi: 00004728-200407001-00008 [pii].CrossRefGoogle Scholar
  27. 27.
    Tricarico F, Hlavacek AM, Schoepf UJ, et al. Cardiovascular CT angiography in neonates and children: image quality and potential for radiation dose reduction with iterative image reconstruction techniques. Eur Radiol. 2013;23(5):1306–15.  https://doi.org/10.1007/s00330-012-2734-5.CrossRefPubMedGoogle Scholar
  28. 28.
    Stocker TJ, Deseive S, Leipsic J, et al. Reduction in radiation exposure in cardiovascular computed tomography imaging: results from the PROspective multicenter registry on radiaTion dose estimates of cardiac CT angIOgraphy iN daily practice in 2017 (PROTECTION VI). Eur Heart J. 2018;39(41):3715–23.  https://doi.org/10.1093/eurheartj/ehy546.CrossRefPubMedGoogle Scholar
  29. 29.
    Rubin GD, Dake MD, Napel S, et al. Spiral CT of renal artery stenosis: comparison of three-dimensional rendering techniques. Radiology. 1994;190(1):181–9.CrossRefGoogle Scholar
  30. 30.
    Johnson PT, Schneider R, Lugo-Fagundo C, Johnson MB, Fishman EK. MDCT angiography with 3D rendering: a novel cinematic rendering algorithm for enhanced anatomic detail. AJR Am J Roentgenol. 2017;209(2):309–12.  https://doi.org/10.2214/AJR.17.17903.CrossRefPubMedGoogle Scholar
  31. 31.
    He C, Yang JG, Li YM, et al. Comparison of lower extremity atherosclerosis in diabetic and non-diabetic patients using multidetector computed tomography. BMC Cardiovasc Disord. 2014;14:125-2261-14-125.  https://doi.org/10.1186/1471-2261-14-125.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Saremi F, Achenbach S. Coronary plaque characterization using CT. AJR Am J Roentgenol. 2015;204(3):W249–60.  https://doi.org/10.2214/AJR.14.13760.CrossRefPubMedGoogle Scholar
  33. 33.
    Rubin GD, Schmidt AJ, Logan LJ, Sofilos MC. Multi-detector row CT angiography of lower extremity arterial inflow and runoff: initial experience. Radiology. 2001;221(1):146–58.CrossRefGoogle Scholar
  34. 34.
    Funama Y, Oda S, Utsunomiya D, et al. Coronary artery stent evaluation by combining iterative reconstruction and high-resolution kernel at coronary CT angiography. Acad Radiol. 2012;19(11):1324–31.  https://doi.org/10.1016/j.acra.2012.06.013.CrossRefPubMedGoogle Scholar
  35. 35.
    Riffel P, Haubenreisser H, Higashigaito K, et al. Combined static and dynamic computed tomography angiography of peripheral artery occlusive disease: comparison with magnetic resonance angiography. Cardiovasc Intervent Radiol. 2018;41(8):1205–13.  https://doi.org/10.1007/s00270-018-1911-6.CrossRefPubMedGoogle Scholar
  36. 36.
    Fleischmann D, Hellinger J, Napoli A. Multidetector-row CT angiography of peripheral arteries: imaging upper-extremity and lower-extremity vascular disease. In: Multidetector-row CT angiography. Berlin, Heidelberg: Springer; 2005. p. 187–98.Google Scholar
  37. 37.
    Norgren L, Hiatt WR, Dormandy JA, Nehler MR, Harris KA, Fowkes FGR. Inter-society consensus for the management of peripheral arterial disease (TASC II). J Vasc Surg. 2007;45(Suppl S):S5-67; S5–67. http://www.ncbi.nlm.nih.gov/pubmed/17223489.PubMedGoogle Scholar
  38. 38.
    Met R, Bipat S, Legemate DA, Reekers JA, Koelemay MJW. Diagnostic performance of computed tomography angiography in peripheral arterial disease: a systematic review and meta-analysis. JAMA. 2009;301(4):415–24.CrossRefGoogle Scholar
  39. 39.
    Shareghi S, Gopal A, Gul K, et al. Diagnostic accuracy of 64 multidetector computed tomographic angiography in peripheral vascular disease. Catheter Cardiovasc Interv. 2009;NA–NA; NA–NA.  https://doi.org/10.1002/ccd.22228.
  40. 40.
    Napoli A, Anzidei M, Zaccagna F, et al. Peripheral arterial occlusive disease: diagnostic performance and effect on therapeutic management of 64-section CT angiography. Radiology. 2011;261(3):976–86.  https://doi.org/10.1148/radiol.11103564.CrossRefPubMedGoogle Scholar
  41. 41.
    Lim JC, Ranatunga D, Owen A, et al. Multidetector (64+) computed tomography angiography of the lower limb in symptomatic peripheral arterial disease: assessment of image quality and accuracy in a tertiary care setting. J Comput Assist Tomogr. 2017;41(2):327–33.  https://doi.org/10.1097/RCT.0000000000000494.CrossRefPubMedGoogle Scholar
  42. 42.
    Kau T, Eicher W, Reiterer C, et al. Dual-energy CT angiography in peripheral arterial occlusive disease accuracy of maximum intensity projections in clinical routine and subgroup analysis. Eur Radiol. 2011;21(8):1677–86. http://www.springerlink.com/index/10.1007/s00330-011-2099-1.CrossRefGoogle Scholar
  43. 43.
    De Santis D, De Cecco CN, Schoepf UJ, et al. Modified calcium subtraction in dual-energy CT angiography of the lower extremity runoff: impact on diagnostic accuracy for stenosis detection. Eur Radiol. 2019;  https://doi.org/10.1007/s00330-019-06032-y.CrossRefGoogle Scholar
  44. 44.
    Sommer WH, Helck A, Bamberg F, et al. Diagnostic value of time-resolved CT angiography for the lower leg. Eur Radiol. 2010;20(12):2876–81. http://www.springerlink.com/index/10.1007/s00330-010-1861-0.CrossRefGoogle Scholar
  45. 45.
    Jens S, Koelemay MJ, Reekers JA, Bipat S. Diagnostic performance of computed tomography angiography and contrast-enhanced magnetic resonance angiography in patients with critical limb ischaemia and intermittent claudication: systematic review and meta-analysis. Eur Radiol. 2013;23(11):3104–14.  https://doi.org/10.1007/s00330-013-2933-8.CrossRefPubMedGoogle Scholar
  46. 46.
    European Stroke Organisation, Tendera M, Aboyans V, et al. ESC guidelines on the diagnosis and treatment of peripheral artery diseases: document covering atherosclerotic disease of extracranial carotid and vertebral, mesenteric, renal, upper and lower extremity arteries: the task force on the diagnosis and treatment of peripheral artery diseases of the european society of cardiology (ESC). Eur Heart J. 2011;32(22):2851–906.  https://doi.org/10.1093/eurheartj/ehr211.CrossRefGoogle Scholar
  47. 47.
    Bozlar U, Ogur T, Norton PT, Khaja MS, All J, Hagspiel KD. CT angiography of the upper extremity arterial system: Part 1-anatomy, technique, and use in trauma patients. AJR Am J Roentgenol. 2013;201(4):745–52.  https://doi.org/10.2214/AJR.13.11207.CrossRefPubMedGoogle Scholar
  48. 48.
    Bozlar U, Ogur T, Khaja MS, All J, Norton PT, Hagspiel KD. CT angiography of the upper extremity arterial system: Part 2- clinical applications beyond trauma patients. AJR Am J Roentgenol. 2013;201(4):753–63.  https://doi.org/10.2214/AJR.13.11208.CrossRefPubMedGoogle Scholar
  49. 49.
    Hellinger JC, Epelman M, Rubin GD. Upper extremity computed tomographic angiography: state of the art technique and applications in 2010. Radiol Clin N Am. 2010;48(2):397–421.  https://doi.org/10.1016/j.rcl.2010.02.022.CrossRefPubMedGoogle Scholar
  50. 50.
    Arnett DM, Lee JC, Harms MA, et al. Caliber and fitness of the axillary artery as a conduit for large-bore cardiovascular procedures. Catheter Cardiovasc Interv. 2018;91(1):150–6.  https://doi.org/10.1002/ccd.27416.CrossRefPubMedGoogle Scholar
  51. 51.
    Chidambaram PK, Swaminathan RK, Ganesan P, Mayavan M. Segmental comparison of peripheral arteries by doppler ultrasound and CT angiography. J Clin Diagn Res. 2016;10(2):TC12–6.  https://doi.org/10.7860/JCDR/2016/17191.7242.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Gillet R, Teixeira P, Meyer JB, et al. Dynamic CT angiography for the diagnosis of patients with thoracic outlet syndrome: correlation with patient symptoms. J Cardiovasc Comput Tomogr. 2018;12(2):158–65. doi: S1934-5925(17)30250-2 [pii].CrossRefGoogle Scholar
  53. 53.
    Cansu A, Soyturk M, Ozturk MH, Kul S, Pulathan Z, Dinc H. Diagnostic value of color doppler ultrasonography and MDCT angiography in complications of hemodialysis fistulas and grafts. Eur J Radiol. 2013;82(9):1436–43.  https://doi.org/10.1016/j.ejrad.2013.03.015.CrossRefPubMedGoogle Scholar
  54. 54.
    Ahmed S, Raman SP, Fishman EK. Three-dimensional MDCT angiography for the assessment of arteriovenous grafts and fistulas in hemodialysis access. Diagn Interv Imaging. 2016;97(3):297–306.  https://doi.org/10.1016/j.diii.2015.12.008.CrossRefPubMedGoogle Scholar
  55. 55.
    Heye S, Maleux G, Claes K, Kuypers D, Oyen R. Stenosis detection in native hemodialysis fistulas with MDCT angiography. AJR Am J Roentgenol. 2009;192(4):1079–84.  https://doi.org/10.2214/AJR.08.1620.CrossRefPubMedGoogle Scholar
  56. 56.
    Khandelwal N, Kalra N, Garg MK, et al. Multidetector CT angiography in takayasu arteritis. Eur J Radiol. 2011;77(2):369–74.  https://doi.org/10.1016/j.ejrad.2009.08.001.CrossRefPubMedGoogle Scholar
  57. 57.
    Colip CG, Gorantla V, LeBedis CA, Soto JA, Anderson SW. Extremity CTA for penetrating trauma: 10-year experience using a 64-detector row CT scanner. Emerg Radiol. 2017;24(3):223–32.  https://doi.org/10.1007/s10140-016-1469-z.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Division of Noninvasive Cardiovascular Radiology, Department of Radiology and Medical ImagingUniversity of VirginiaCharlottesvilleUSA
  2. 2.Division of Noninvasive Cardiovascular Radiology, Department of Radiology and Medical Imaging, Advanced Visualization LabUniversity of VirginiaCharlottesvilleUSA

Personalised recommendations