Radionuclide Imaging

  • Mitchel R. StacyEmail author
  • Ting-Heng Chou
  • Albert J. Sinusas


Peripheral arterial disease (PAD) is an atherosclerotic disease affecting non-coronary blood vessels that results in stenosis or occlusion of lower extremity arteries and the carotid arteries, leading to downstream reductions in blood flow and perfusion and subsequently increasing the risk for lower extremity ulceration and amputation, as well as ischemic stroke and cerebral infarction. The emergence of radionuclide imaging with the modalities single photon emission computed tomography (SPECT)/CT and positron-emission tomography (PET)/CT has begun to offer opportunities for novel non-invasive insight into the physiological consequences associated with PAD. This chapter discusses the past, present, and future of radionuclide-based imaging approaches that have specific relevance for the evaluation of PAD, with particular focus on targeted physiological imaging of perfusion/blood flow, angiogenesis, and atherosclerosis.


Radionuclide imaging Peripheral arterial disease PAD Atherosclerotic disease Scintigraphy SPECT imaging PET imaging 


  1. 1.
    Dua A, Lee CJ. Epidemiology of peripheral arterial disease and critical limb ischemia. Tech Vasc Interv Radiol. 2016;19:91–5.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Stacy MR, Sinusas AJ. Novel applications of radionuclide imaging in peripheral vascular disease. Cardiol Clin. 2016;34:167–77.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Kuwert T, Schillaci O. SPECT/CT: yesterday, today, tomorrow. Clin Transl Imaging. 2014;2:443–4.CrossRefGoogle Scholar
  4. 4.
    Smith BC, Quimby EH. The use of radioactive sodium as a tracer in the study of peripheral vascular disease. Radiology. 1945;45:335–46.CrossRefGoogle Scholar
  5. 5.
    Kety S. Measurement of regional circulation by the local clearance of radioactive sodium. Am Heart J. 1949;38:321–8.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Lassen NA. Muscle blood flow in normal man and in patients with intermittent claudication evaluated by simultaneous Xe(133) and Na(24) clearances. J Clin Invest. 1964;43:1805–12.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Lassen OA, Lindberg J, Munck O. Measurement of blood flow through skeletal muscle by intramuscular injection of Xenon-133. Lancet. 1964;1(7335):686–9.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Lassen NA, Lindbjerg IF, Dahn I. Validity of the Xenon-133 method for measurement of muscle blood flow evaluated by simultaneous venous occlusion plethysmography: observations in the calf of normal man and in patients with occlusive vascular disease. Circ Res. 1965;16:287–93.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Lindbjerg IF. Measurement of muscle blood-flow with Xenon-133 after histamine injection as a diagnostic method in peripheral arterial disease. Scand J Clin Lab Invest. 1965b;17:371–80.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Lindbjerg IF. Diagnostic application of the Xenon-133 method in peripheral arterial disease. Scand J Clin Lab Invest. 1965a;17:589–99.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Jones EL, Wagner HN Jr, Zuidema GD. New method for studying peripheral circulation in man. Arch Surg. 1965;91:725–34.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Wagner HN Jr, et al. A method for the study of the peripheral circulation in man. J Nucl Med. 1965;6:150–4.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Siegel ME, et al. Effect of reactive hyperemia on the distribution of radioactive microspheres in patients with peripheral vascular disease. Am J Roentgenol Radium Therapy, Nucl Med. 1973;118(4):814–9.CrossRefGoogle Scholar
  14. 14.
    Siegel ME, Giargiana FA Jr, Rhodes BA, et al. Perfusion of the ischemic ulcers of the extremity: a prognostic indicator of healing. Arch Surg. 1975;110(3):265–8.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Rhodes BA, et al. The distribution of radioactive microspheres after intra-arterial injection in the legs of patients with peripheral vascular disease. Am J Roentgenol Radium Therapy, Nucl Med. 1973;118:820–6.CrossRefGoogle Scholar
  16. 16.
    Siegel ME, Giargiana FA Jr, White RI Jr, et al. Peripheral vascular perfusion scanning. Correlation with the arteriogram and clinical assessment in the patient with peripheral vascular disease. Am J Roentgenol Radium Therapy, Nucl Med. 1975;125(3):628–63.CrossRefGoogle Scholar
  17. 17.
    Oshima M, Ijima H, Kohda Y. Peripheral arterial disease diagnosed with high-count-rate radionuclide arteriography. Radiology. 1984;152:161–6.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Siegel ME, et al. A new objective criterion for determining, noninvasively, the healing potential of an ischemic ulcer. J Nucl Med. 1981;22:187–9.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Siegel ME, Stewart CA. Thallium-201 peripheral perfusion scans: feasibility of single-dose, single-day, rest and stress study. AJR Am J Roentgenol. 1981;136(6):1179–83.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Seder JS, et al. Detecting and localizing peripheral arterial disease: assessment of 201Tl scintigraphy. AJR Am J Roentgenol. 1981;137(2):373–80.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Hamanaka D, et al. A quantitative assessment of scintigraphy of the legs using 201Tl. Eur J Nucl Med. 1984;9(1):12–6.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Oshima M, et al. Quantification of leg muscle perfusion using thallium-201 single photon emission computed tomography. J Nucl Med. 1989;30(4):458–65.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Duet M, et al. Whole-body (201)Tl scintigraphy can detect exercise lower limb perfusion abnormalities in asymptomatic diabetic patients with normal Doppler pressure indices. Nucl Med Commun. 2001;22(9):949–54.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Cosson E, et al. Lower-limb vascularization in diabetic patients: assessment by thallium-201 scanning coupled with exercise myocardial scintigraphy. Diabetes Care. 2001;24:870–4.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Lin C-C, et al. Usefulness of thallium-201 muscle perfusion scan to investigate perfusion reserve in the lower limbs of type 2 diabetic patients. J Diabetes Complicat. 2004;18(4):233–6.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Stacy MR, et al. Multimodality imaging approach for serial assessment of regional changes in lower extremity arteriogenesis and tissue perfusion in a porcine model of peripheral arterial disease. Circ Cardiovasc Imaging. 2014;7(1):92–9.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Sayman HB, Urgancioglu I. Muscle perfusion with technetium-MIBI in lower extremity peripheral arterial diseases. J Nucl Med. 1991;32(9):1700–3.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Miles KA, et al. Leg muscle scintigraphy with (99)Tc-MIBI in the assessment of peripheral vascular (arterial) disease. Nucl Med Commun. 1992;13:593–603.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Celen YZ, et al. Investigation of perfusion reserve using 99Tc(m)-MIBI in the lower limbs of diabetic patients. Nucl Med Commun. 2000;21(9):817–22.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Kuśmierek J, et al. Radionuclide assessment of lower limb perfusion using (99m)Tc-MIBI in early stages of atherosclerosis. Nucl Med Rev. 2006;9(1):18–23.Google Scholar
  31. 31.
    Miyamoto M, et al. Therapeutic angiogenesis by autologous bone marrow cell implantation for refractory chronic peripheral arterial disease using assessment of neovascularization by 99mTc-tetrofosmin (TF) perfusion scintigraphy. Cell Transplant. 2004;13(4):429–37.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Takagi G, et al. Imaging angiogenesis using 99mTc-MAA scintigraphy in patients with peripheral artery disease. J Nucl Med. 2016;57:192–7.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Takagi G, et al. Controlled-release basic fibroblast growth factor for peripheral artery disease: comparison with autologous bone marrow-derived stem cell transfer. Tissue Eng Part A. 2011;17:2787–94.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Stacy MR, Zhou W, Sinusas AJ. Radiotracer imaging of peripheral vascular disease. J Nucl Med. 2013;54(12):2104–10.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Buckley JL, et al. Radiotracer imaging allows for assessment of serial changes in angiosome foot perfusion following revascularization and predicts limb salvage outcomes in patients with critical limb ischemia. J Am Coll Cardiol. 2017;69:A1393.CrossRefGoogle Scholar
  36. 36.
    Depairon M, et al. Effect of exercise on the leg distribution of C15O2 and 15O2 in normals and in patients with peripheral ischemia: a study using positron tomography. Int Angiol. 1988;7:254–7.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Depairon M, et al. Assessment of flow and oxygen delivery to the lower extremity in arterial insufficiency: a PET-scan study comparison with other methods. Angiology. 1991;42(10):788–95.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Burchert W, et al. Oxygen-15-water PET assessment of muscular blood flow in peripheral vascular disease. J Nucl Med. 1996;37:93–8.Google Scholar
  39. 39.
    Schmidt MA, et al. Calf flow reserve with H(2)(15)O PET as a quantifiable index of lower extremity flow. J Nucl Med. 2003;44(6):915–9.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Scremin OU, et al. Preamputation evaluation of lower-limb skeletal muscle perfusion with (15)O H2O positron emission tomography. Am J Phys Med Rehabil. 2010;89(6):473–86.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Fischman AJ, et al. Regional measurement of canine skeletal muscle blood flow by positron emission tomography with H2(15)O. J Appl Physiol. 2002;92(4):1709–16.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Peñuelas I, et al. (13)N-ammonia PET as a measurement of hindlimb perfusion in a mouse model of peripheral artery occlusive disease. J Nucl Med. 2007;48(7):1216–23.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of angiogenesis. Nature. 2011;473:298–307.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Isner JM, Pieczek A. Clinical evidence of angiogenesis after arterial gene transfer of phVEGF165 in patient with ischaemic limb. Lancet. 1996;348(9024):370–4.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Baumgartner I, et al. Clinical investigation and reports constitutive expression of phVEGF 165 after intramuscular gene transfer promotes collateral vessel development in patients with critical limb ischemia. Circulation. 1998;97(12):1114–23.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Rajagopalan S, et al. Regional angiogenesis with vascular endothelial growth factor in peripheral arterial disease a phase II randomized, double-blind, controlled study of adenoviral delivery of vascular endothelial growth factor 121 in patients with disabling intermittent cla. Circulation. 2003;108(16):1933–8.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Nikol S, et al. Therapeutic angiogenesis with intramuscular NV1FGF improves amputation-free survival in patients with critical limb ischemia. Mol Therapy. 2008;16(5):972–8.CrossRefGoogle Scholar
  48. 48.
    Using T, et al. Clinical and population studies long-term follow-up evaluation of results from clinical peripheral arterial disease. Arterioscler Thromb Vasc Biol. 2012;32(10):2503–9.CrossRefGoogle Scholar
  49. 49.
    Rajagopalan S, et al. Use of a constitutively active hypoxia-inducible factor-1 alpha transgene as a therapeutic strategy in no-option critical limb ischemia patients phase I dose-escalation experience. Circulation. 2007;115(10):1234–43.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Tateishi-yuyama E, et al. Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells: a pilot study and a randomised controlled trial. Lancet. 2002;360:427–35.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Walter DH, et al. Intraarterial administration of bone marrow mononuclear cells in patients with critical limb ischemia. Circ Cardiovasc Interv. 2011;4(1):26–37.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Kawamoto A, et al. Intramuscular transplantation of G-CSF-mobilized CD34+ cells in patients with critical limb ischemia: a phase I/IIa, multicenter, single-blinded, dose-escalation clinical trial. Stem Cells. 2009;27(11):2857–64.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Lasala GP, et al. Combination stem cell therapy for the treatment of severe limb ischemia : safety and efficacy analysis. Angiology. 2010;61(6):551–6.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Ferrara N, Davis-Smyth T. The biology of vascular endothelial growth factor. Endocr Rev. 1997;18(1):4–25.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Robinson CJ, Stringer SE. The splice variants of vascular endothelial growth factor (VEGF) and their receptors. J Cell Sci. 2001;114(5):853–65.PubMedPubMedCentralGoogle Scholar
  56. 56.
    Lu E, et al. Targeted in vivo labeling of receptors for vascular endothelial growth factor: approach to identification of ischemic tissue. Circulation. 2003;108(1):97–103.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Willmann JK, et al. Monitoring of the biological response to murine hindlimb ischemia with 64Cu-labeled vascular endothelial growth factor-121 positron emission tomography. Circulation. 2008;117(7):915–22.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Clyman R, Mauray F, Kramer R. Beta 1 and beta 3 integrins have different roles in the adhesion and migration of vascular smooth muscle cells on extracellular matrix. Exp Cell Res. 1992;200(2):272–84.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Brooks P, et al. Integrin alpha v beta 3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell. 1994;79(7):1157–64.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Shattil SJ. Function and regulation of the beta 3 integrins in hemostasis and vascular biology. Thromb Haemost. 1995;74(1):149–55.PubMedPubMedCentralGoogle Scholar
  61. 61.
    Dijkgraaf I, Boerman O. Radionuclide imaging of tumor angiogenesis. Cancer Biother Radiopharm. 2009;24(6):637–47.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Stacy MR, Maxfield MW, Sinusas AJ. Targeted molecular imaging of angiogenesis in PET and SPECT: a review. Yale J Biol Med. 2012;85(1):75–86.PubMedPubMedCentralGoogle Scholar
  63. 63.
    Hua J, et al. Noninvasive imaging of angiogenesis with a 99mTc-labeled peptide targeted at alphavbeta3 integrin after murine hindlimb ischemia. Circulation. 2005;111(24):3255–60.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Dobrucki LW, et al. Serial noninvasive targeted imaging of peripheral angiogenesis: validation and application of a semiautomated quantitative approach. J Nucl Med. 2009;50(8):1356–63.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Tsioupinaki K, et al. Molecular imaging for the in vivo monitoring of angiogenesis in a hindlimb ischemia animal model. Front Biomed Technol. 2014;1(1):35–41.Google Scholar
  66. 66.
    Tekabe Y, et al. Treatment effect with anti-RAGE F(ab’)2 antibody improves hind limb angiogenesis and blood flow in type 1 diabetic mice with left femoral artery ligation. Vasc Med. 2015;20(3):212–8.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Goggi JL, et al. Simvastatin augments revascularization and reperfusion in a murine model of hind limb ischemia – multimodal imaging assessment. Nucl Med Biol. 2017;46:25–31.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Kim MH, et al. A novel Tc-99m and fluorescence labeled peptide as a multimodal imaging agent for targeting angiogenesis in a murine hindlimb ischemia model. Appl Radiat Isot. 2017;121:22–7.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Lee KH, et al. Radiolabeled RGD uptake and alphav integrin expression is enhanced in ischemic murine hindlimbs. J Nucl Med. 2005;46(3):472–8.PubMedPubMedCentralGoogle Scholar
  70. 70.
    Jeong JM, et al. Preparation of a promising angiogenesis PET imaging agent: 68Ga-labeled c(RGDyK)-Isothiocyanatobenzyl-1,4,7-Triazacyclononane-1,4,7-triacetic acid and feasibility studies in mice. J Nucl Med. 2008;49(5):830–6.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Almutairi A, et al. Biodegradable dendritic positron-emitting nanoprobes for the noninvasive imaging of angiogenesis. Proc Natl Acad Sci U S A. 2009;106(3):685–90.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Hedhli J, et al. Multimodal assessment of mesenchymal stem cell therapy for diabetic vascular complications. Theranostics. 2017;7(16):3876–88.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Liu Y, et al. Targeting angiogenesis using a C-type atrial natriuretic factor-conjugated nanoprobe and PET. J Nucl Med. 2011;52(12):1956–63.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Dallas NA, et al. Endoglin (CD105): a marker of tumor vasculature and potential target for therapy. Clin Cancer Res. 2008;14(7):1931–7.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Orbay H, et al. Pravastatin stimulates angiogenesis in a murine hindlimb ischemia model: a positron emission tomography imaging study with Cu-NOTA-TRC105. Am J Transl Res. 2014;6(1):54–63.Google Scholar
  76. 76.
    Little WC, et al. Can coronary angiography predict the site of a subsequent myocardial infarction in patients with mild-to-moderate coronary artery disease? Circulation. 1988;78(5 Pt 1):1157–66.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Ambrose JA, et al. Angiographic progression of coronary artery disease and the development of myocardial infarction. J Am Coll Cardiol. 1988;12(1):56–62.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Virmani R, et al. Pathology of the unstable plaque. Prog Cardiovasc Dis. 2002;44(5):349–56.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Rosenfeld ME. Leukocyte recruitment into developing atherosclerotic lesions: the complex interaction between multiple molecules keeps getting more complex. Arterioscler Thromb Vasc Biol. 2002;22(3):361–3.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Libby P. Inflammation in atherosclerosis. Nature. 2002;420(6917):868–74.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    van der Wal AC, et al. Site of intimal rupture or erosion of thrombosed coronary atherosclerotic plaques is characterized by an inflammatory process irrespective of the dominant plaque morphology. Circulation. 1994;89(1):36–44.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Leppanen O, et al. ATP depletion in macrophages in the core of advanced rabbit atherosclerotic plaques in vivo. Atherosclerosis. 2006;188(2):323–30.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Lederman RJ, et al. Detection of atherosclerosis using a novel positron-sensitive probe and 18-fluorodeoxyglucose (FDG). Nucl Med Commun. 2001;22(7):747–53.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Yun M, et al. F-18 FDG uptake in the large arteries. A new observation. Clin Nucl Med. 2001;26(4):314–9.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Bural GG, et al. FDG-PET is an effective imaging modality to detect and quantify age-related atherosclerosis in large arteries. Eur J Nucl Med Mol Imaging. 2008;35(3):562–9.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Pasha AK, et al. Effects of age and cardiovascular risk factors on (18)F-FDG PET/CT quantification of atherosclerosis in the aorta and peripheral arteries. Hellenic J Nucl Med. 2015;18(1):5–10.Google Scholar
  87. 87.
    Bural GG, et al. Atherosclerotic 18F-FDG and MDP uptake in femoral arteries, changes with age. Nucl Med Commun. 2016;37(8):833–6.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Yun M, et al. 18F FDG uptake in the large arteries: a correlation study with the atherogenic risk factors. Semin Nucl Med. 2002;32(1):70–6.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Rominger A, et al. 18F-FDG PET/CT identifies patients at risk for future vascular events in an otherwise asymptomatic cohort with neoplastic disease. J Nucl Med. 2009;50:1611–20.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    De Boer SA, et al. Arterial stiffness is positively associated with 18F-fluorodeoxyglucose positron emission tomography-assessed subclinical vascular inflammation in people with early type 2 diabetes. Diabetes Care. 2016;39(8):1440–7.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Hetterich H, et al. Natural history of atherosclerotic disease progression as assessed by 18F-FDG PET/CT. Int J Cardiovasc Imaging. 2016;32(1):49–59.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Jezovnik MK, et al. Identification of inflamed atherosclerotic lesions in vivo using PET-CT. Inflammation. 2014;37(2):426–34.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Myers KS, et al. Correlation between arterial FDG uptake and biomarkers in peripheral artery disease. JACC Cardiovasc Imaging. 2012;5(1):38–45.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Rudd JHF, et al. Atherosclerosis inflammation imaging with 18F-FDG PET: carotid, iliac, and femoral uptake reproducibility, quantification methods, and recommendations. J Nucl Med. 2008;49(6):871–8.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Lee SJ, et al. Reversal of vascular 18F-FDG uptake with plasma high-density lipoprotein elevation by atherogenic risk reduction. J Nucl Med. 2008;49:1277–82.PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Ishii H, et al. Comparison of atorvastatin 5 and 20 mg/d for reducing F-18 fluorodeoxyglucose uptake in atherosclerotic plaques on positron emission tomography/computed tomography: a randomized, investigator-blinded, open-label, 6-month study in Japanese adults scheduled. Clin Ther. 2010;32(14):2337–47.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Derlin T, et al. Feasibility of 18F-sodium fluoride PET/CT for imaging of atherosclerotic plaque. J Nucl Med. 2010;51(6):862–5.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Ferreira MJ, et al. Assessment of atherosclerotic plaque calcification using F18-NaF PET-CT. J Nucl Cardiol. 2017;25(5):1733–41. Epub ahead of print.PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Derlin T, Wisotzki C, et al. In vivo imaging of mineral deposition in carotid plaque using 18F-sodium fluoride PET/CT: correlation with atherogenic risk factors. J Nucl Med. 2011;52:362–8.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Janssen T, et al. Association of linear (18)F-sodium fluoride accumulation in femoral arteries as a measure of diffuse calcification with cardiovascular risk factors: a PET/CT study. J Nucl Cardiol. 2013;20:569–77.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Derlin T, Toth Z, et al. Correlation of inflammation assessed by (18)F-FDG PET, active mineral deposition assessed by (18)F-fluoride PET, and vascular calcification in atherosclerotic plaque: a dual-tracer PET/CT study. J Nucl Med. 2011;52:1020–7.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Yamasaki K, et al. In vitro and metabolism of [14C]acetate in rabbit atherosclerotic arteries: biological basis for atherosclerosis imaging with [11C]acetate. Nucl Med Biol. 2018;56:21–5.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Derlin T, et al. Feasibility of 11C-acetate PET/CT for imaging of fatty acid synthesis in the atherosclerotic vessel wall. J Nucl Med. 2011;52(12):1848–54.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Liu Y, et al. Molecular imaging of atherosclerotic plaque with 64Cu-labeled natriuretic peptide and PET. J Nucl Med. 2010;51(1):85–91.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Nie X, et al. PET/MRI of hypoxic atherosclerosis using 64Cu-ATSM in a rabbit model. J Nucl Med. 2016;57(12):2006–11.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Bartholoma MD, et al. (18)F-labeled rhodamines as potential myocardial perfusion agents: comparison of pharmacokinetic properties of several rhodamines. Nucl Med Biol. 2015;42:796–803.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Bartholoma MD, et al. Biological characterization of F-18-labeled rhodamine B, a potential positron emission tomography perfusion tracer. Nucl Med Biol. 2013;40:1043–8.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    AlJammaz I, et al. Novel synthesis and initial preclinical evaluation of (18)F-[FDG] labeled rhodamine: a potential PET myocardial perfusion imaging agent. Nucl Med Biol. 2015;42:804–8.PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Berman DS, et al. Phase II safety and clinical comparison with single-photon emission computed tomography myocardial perfusion imaging for detection of coronary artery disease: flurpiridaz F 18 positron emission tomography. J Am Coll Cardiol. 2013;61:469–77.PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Packard RR, et al. Absolute quantification of myocardial blood flow in human subjects with or without myocardial ischemia using dynamic flurpiridaz F 18 PET. J Nucl Med. 2014;55:1438–44.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Wells RG, et al. Dynamic SPECT measurement of absolute myocardial blood flow in a porcine model. J Nucl Med. 2014;55:1685–91.PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Pande RL, et al. Impaired skeletal muscle glucose uptake by [18F]Fluorodeoxyglucose-positron emission tomography in patients with peripheral artery disease and intermitten claudication. Arterioscler Thromb Vasc Biol. 2011;31:190–6.PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Nguyen PK, Riegler J, Wu JC. Stem cell imaging: from bench to bedside. Cell Stem Cell. 2014;14:431–44.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Kang WJ, et al. Tissue distribution of 18F-FDG-labeled peripheral hematopoietic stem cells after intracoronary administration in patients with myocardial infarction. J Nucl Med. 2006;47:1295–301.PubMedPubMedCentralGoogle Scholar
  115. 115.
    Schachinger V, et al. Pilot trial on determinants of progenitor cell recruitment to the infarcted human myocardium. Circulation. 2008;118(14):1425–32.PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Hofmann M, et al. Monitoring of bone marrow cell homing into the infarcted human myocardium. Circulation. 2005;111(17):2198–202.PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Karpov RS, et al. Autologous mononuclear bone marrow cells during reparative regeneration after acute myocardial infarction. Bull Exp Biol Med. 2005;140(5):640–3.PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Vrtovec B, et al. Comparison of transendocardial and intracoronary CD34+ cell transplantation in patients with nonischemic dilated cardiomyopathy. Circulation. 2013;128(Suppl 1):S42–9.PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Templin C, et al. Transplantation and tracking of human-induced pluripotent stem cells in a pig model of myocardial infarction: assessment of cell survival, engraftment, and distribution by hybrid single photon emission computed tomography/computed tomography of sodium iod. Circulation. 2012;126(4):430–9.PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Dohan O, et al. The sodium/iodide symporter (NIS): characterization, regulation, and medical significance. Endocr Rev. 2003;24(1):48–77.PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Fiechter M, et al. Cardiac quadruple-fusion imaging: a brief report on a novel integrated multimodality approach for in vivo visualization of transplanted stem cells. Int J Cardiol. 2012;161(1):62–3.PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Figueroa AL, et al. Measurement of arterial activity on routine FDG PET/CT images improves prediction of risk of future CV events. JACC Cardiovasc Imaging. 2013;6:1250–9.PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Robson PM, et al. MR/PET imaging of the cardiovascular system. JACC Cardiovasc Imaging. 2017;10:1165–79.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Orbay H, et al. Positron emission tomography imaging of angiogenesis in a murine hindlimb ischemia model with (64)Cu-labeled TRC105. Mol Pharm. 2013;10(7):2749–56.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Mitchel R. Stacy
    • 1
    • 2
    Email author
  • Ting-Heng Chou
    • 2
  • Albert J. Sinusas
    • 3
  1. 1.Division of Vascular Diseases and SurgeryThe Ohio State University College of MedicineColumbusUSA
  2. 2.Center for Regenerative MedicineThe Research Institute at Nationwide Children’s HospitalColumbusUSA
  3. 3.Departments of Internal Medicine and Radiology and Biomedical ImagingYale University School of MedicineNew HavenUSA

Personalised recommendations