• Martin J. GoddardEmail author


Myocarditis/inflammatory cardiomyopathy is defined as inflammatory lesion affecting heart muscle with leucocytic cell infiltration and non-ischaemic degeneration and/or necrosis of myocytes. The disease incidence is unknown, but is most often related to infections, with viruses being the most common cause. Auto-immunity either alone, or as a sequel to a viral myocarditis, also has a role. Myocardial inflammation may also occur in relation to drugs and toxins. The patterns of these different myocarditic processes are described and the pathophysiology is discussed.

Many cases cannot be verified on endomyocardial biopsy and a multi-disciplinary approach involving clinicians, immunologists and pathologists together with serological and molecular tests is required.


Myocarditis Inflammation Lymphocyte Giant cell Granuloma Eosinophil Virus 


  1. 1.
    Elliott P, Andersson B, Arbustini E, et al. Classification of the cardiomyopathies: a position statement from the European Society of Cardiology working group on myocardial and pericardial diseases. Eur Heart J. 2008;29:270–6.CrossRefGoogle Scholar
  2. 2.
    Shauer A, Gotsman I, Keren A, et al. Acute viral myocarditis: current concepts in diagnosis and treatment. Isr Med Assoc J. 2013;15:180–5.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Saphir O. Myocarditis, a general review with an analysis of 240 cases. Arch Pathol. 1941;32:1000–7.Google Scholar
  4. 4.
    Global Burden of Disease Study 2013 Collaborators. Global, regional and national incidence, prevalence and years lived with disability for 301 chronic disease and injuries in 188 countries, 1990-2013: a systematic analysis for the global Burden of disease Study 2013. Lancet. 2015;386:743–800.PubMedCentralCrossRefGoogle Scholar
  5. 5.
    Caforio A, Pankuweit E, Arbustini E, et al. Current state of knowledge on aetiology, diagnosis, management and therapy of myocarditis: a position statement of the European Society of Cardiology Working Group on Myocardial and Pericardial diseases. Eur Heart J. 2013;34:2636–48.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Eckart R, Scoville E, Campbell C, et al. Sudden death in young adults: a 25 year review of autopsies in military recruits. Ann Intern Med. 2004;141:829–34.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Gravanis M, Sternby N. Incidence of myocarditis. Arch Pathol Lab Med. 1991;115:390–2.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Passarino G, Burlo P, Ciccone G, et al. Prevalence of myocarditis at autopsy in Turin Italy. Arch Pathol Lab Med. 1997;121:619–22.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Karjalainen K, Heikkila J. Incidence of three presentations of the acute myocarditis in young men in military service: a 20 year experience. Eur Heart J. 1999;20:1020–5.CrossRefGoogle Scholar
  10. 10.
    Chow L, Radio S, Sear T, McManus B. Insensitivity of right ventricular endomyocardial biopsy in the diagnosis of myocarditis. J Am Coll Cardiol. 1989;14:915–20.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Elamm C, Fairweather D, Cooper L. Pathogenesis and diagnosis of myocarditis. Heart. 2012;98:835–40.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Mason J, O’Connell A, Herskowitz A, et al. A clinical trial of immunosuppressive therapy in myocarditis. N Engl J Med. 1995;333:269–75.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Baughman K. Clinical presentations of myocarditis. Heart Fail Clin. 2005;1:363–76.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Kindermann I, Barth C, Mahfoud F, et al. Update on myocarditis. J Am Coll Cardiol. 2012;59:779–92.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Magnani J, Dec G. Myocarditis: current trends in diagnosis and treatment. Circulation. 2006;113:876–90.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Aretz HT. Myocarditis: the Dallas criteria. Hum Pathol. 1987;18:619–24.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Edwards W, Holmes D, Reeder G. Diagnosis of active lymphocytic myocarditis by endomyocardial biopsy: quantitative criteria for light microscopy. Mayo Clin Proc. 1982;57:419–25.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Tazelaar H, Billingham M. Myocardial lymphocytes: fact, fancy or myocarditis. Am J Cardiovasc Pathol. 1987;1:47–50.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Linder J, Cassling R, Rogler W, et al. Immunohistochemical characterisation of lymphocytes in uninflamed ventricular myocardium. Arch Pathol Lab Med. 1985;109:917–20.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Schnitt S, Ciano P, Scoen F. Quantification of lymphocytes in endomyocardial biopsies: use and limitations of antibodies to leucocyte common antigen. Hum Pathol. 1987;18:796–800.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Bowles N, Richardson P, Olsen E, Archard L. Detection of coxsackie-b-virus specific RNA sequences in myocardial biopsy samples from patients with myocarditis and dilated cardiomyopathy. Lancet. 1986;i:1120–3.CrossRefGoogle Scholar
  22. 22.
    Bowles N, Ni J, Kearney D, et al. Detection of viruses in myocardial tissues by polymerase chain reaction. Evidence of adenovirus as a common cause of myocarditis in children and adults. J Am Coll Cardiol. 2003;42:466–72.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Why H, Meany B, Richardson P, et al. Clinical and prognostic significance of detection of enteroviral RNA in the myocardium of patients with myocarditis or dilated cardiomyopathy. Circulation. 1994;89:2582–9.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Bock CT, Klinel K, Kandolf R. Human parvovirus B19- associated myocarditis. N Engl J Med. 2010;362:1248–9.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Murry C, Jerome K, Reichenbach D. Fatal parvovirus myocarditis in a 5-year old girl. Hum Pathol. 2001;32:342–5.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Verdonschot J, Hazebroek M, Merken J, et al. Relevance of cardiac parvovirus B19 in myocarditis and dilated cardiomyopathy: review of the literature. Eur J Heart Fail. 2016;18:1430–1.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Yoshikawa T, Ihira M, Suzuki K, et al. Fatal acute myocarditis in an infant with human herpesvirus 6 infection. J Clin Pathol. 2001;54:792–5.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Stewart G, Lopez-Molina A, Gottumukkala R, et al. Myocardial parvovirus B19 persistence: lack of association with clinicopathologic phenotype in adults with heart failure. Circ Heart Fail. 2011;4:71–8.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Figulla HR. Transformation of myocarditis and inflammatory cardiomyopathy to idiopathic dilated cardiomyopathy: fact and fiction. Med Microbiol Immunol. 2004;193:61–4.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Kuhl U, Pauschinger M, Noutsias M, et al. High prevalence of viral genomes and multiple viral infections in the myocardium of adults with “idiopathic” left ventricular dysfunction. Circulation. 2005;111:887–93.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    D’Ambrosio A, Patti G, Manzoli A, et al. The fate of acute myocarditis between spontaneous improvement and evolution to dilated cardiomyopathy: a review. Heart. 2001;85:499–504.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Woudstra L, Juffermans J, van Rossum A, Niessen H, Krijnen P. Infectious myocarditis: the role of the cardiac vasculature. Heart Fail Rev. 2018;23:583–95.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Zanone M, Favaro E, Conaldi P, et al. Persistent infection of human microvascular endothelial cells by coxsackie B viruses induces increased expression of adhesion molecules. J Immunol. 2003;171:438–46.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Ino T, Kishiro M, Okubo M, et al. Late persistent expression of ICAM-1 and VCAM-1 on myocardial tissue in children with lymphocytic myocarditis. Cardiovasc Res. 1997;34:323–8.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Li W, Yu S, Zhao H. Expression of MHC-I and MHC-II antigens in endomyocardial biopsies from patients with viral myocarditis and cardiomyopathy. Chin Med J (Engl). 1995;108:809–11.Google Scholar
  36. 36.
    Kumar A, Perdomo M, Kantele A, et al. Granzyme B mediated function of Parvovirus B19 specific CD4(+) T cells. Clin Trans Immunol. 2015;4:e39.CrossRefGoogle Scholar
  37. 37.
    Esfandiarei M, McManus B. Molecular biology and pathogenesis of viral myocarditis. Annu Rev Pathol. 2008;3:127–55.PubMedCrossRefGoogle Scholar
  38. 38.
    Heymans S, Riksson U, Lehtonen J, Cooper L. The quest for new approaches to inflammatory cardiomyopathy. J Am Coll Cardiol. 2016;68:2346–64.CrossRefGoogle Scholar
  39. 39.
    Nicholson F, Ajetunmobi J, Li M, et al. Molecular detection and serotypic analysis of enterovirus RNA in archival specimens from patients with acute myocarditis. Br Heart J. 1995;74:522–7.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Halapas A, Pissimissis N, Lembessis P, et al. Molecular diagnosis of the viral component in cardiomyopathies: pathophysiological, clinical and therapeutic implications. Expert Opin Ther Targets. 2008;12:821–36.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Tomko R, Xu R, Philipson L. HCAR and MCAR: the human and mouse cellular receptors for subgroup C adenoviruses and group B coxsackieviruses. Proc Natl Acad Sci U S A. 1998;94:3362.Google Scholar
  42. 42.
    Bergelson J, Krithivas A, Celi L, et al. The murine CAR homolog is a receptor for coxsackie B viruses and adenoviruses. J Virol. 1998;72:415–9.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Carthy C, Granville D, Watson K, et al. Caspase activation and cleavage of substrates following coxsackie B3 induced cytopathic effects in HeLa cells. J Virol. 1998;72:7669–75.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Harris K, Coyne C. Death waits for no man - does it wait for a virus? How Enteroviruses induce and control cell death. Cytokine Growth Factor Rev. 2014;25:587–96.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Yuan J, Liu Z, Lim T, et al. CXCL10 inhibits viral replication through recruitment of natural killer cells in coxsackie B3 induced myocarditis. Circ Res. 2009;104:628–38.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Altara R, Mallat Z, Booz G, Zouein F. The CXCL10/CXCR3 axis and cardiac inflammation: implications for immunotherapy to treat infectious and non-infectious diseases of the heart. J Immunol Res. 2016;2016:3496368.CrossRefGoogle Scholar
  47. 47.
    Deonarain R, Cerullo D, Fuse K, et al. Protective role for interferon-β in coxsackievirus B3 infection. Circulation. 2004;110:3540–3.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Epelmann S, Liu P, Mann D. Role of innate and adaptive immune mechanisms in cardiac injury. Nat Rev Immunol. 2015;15:117–29.CrossRefGoogle Scholar
  49. 49.
    Jenke A, Wilk S, Poller W, et al. Adiponectin protects against Toll-like receptor 4 mediated cardiac inflammation and injury. Cardiovasc Res. 2013;99:422–31.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Yang Y, Lv J, Jiang S, et al. The emerging role of Toll-like receptor 4 in myocardial inflammation. Cell Death Dis. 2016;7:e2234.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Noutsias M, Rohde M, Goldner K, et al. Expression of functional T-cell markers and T-cell receptor V beta repertoire in endomyocardial biopsies from patients presenting with acute myocarditis and dilated cardiomyopathy. Eur J Heart Fail. 2011;13:611–8.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Cihakova D, Rose N. Pathogenesis of myocarditis and dilated cardiomyopathy. Adv Immunol. 2008;99:95–114.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Woodruff J, Woodruff J. Involvement of T lymphocytes in the pathogenesis of coxsackie B3 heart disease. J Immunol. 1974;113:1726–34.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Opavsky M, Penninger J, Atken K, et al. Susceptibility to myocarditis is dependent on the response of αβ T lymphocytes to coxsackieviral infection. Circ Res. 1999;85:551–8.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Matsui Y, Inobe M, Okamoto H, et al. Blockade of T cell co-stimulatory signals using adenoviral vectors prevents both the induction and the progression of experimental autoimmune myocarditis. J Mol Cell Cardiol. 2002;34:279–95.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Li L, Li L, Xiao L, Shangguan J. Progranulin ameliorates coxsackievirus-B3-induced viral myocarditis by downregulating Th1 and Th17 cells. Exp Cell Res. 2018;367:241–50.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Cheng H, Xi Y, Chi X, Wu Y, Liu G. Fenofibrate treatment of rats with experimental autoimmune myocarditis by alleviating Treg/Th17 disorder. Central Eur J Immunol. 2016;1:64–70.CrossRefGoogle Scholar
  58. 58.
    Yuan J, Yu M, Lin Q, et al. Neutralisation of IL-17 inhibits the production of anti-ANT autoantibodies in CVB-3 induced acute viral myocarditis. Int Immunopharmacol. 2010;10:272–6.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Kraj P, Ignatowicz L. The mechanisms shaping the repertoire of CD4+ FoxP3+ regulatory T cells. Immunology. 2017;153:290–6.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    An B, Liu X, Li G, Yuan H. Interleukin 37 ameliorates coxsackievirus B3 induced viral myocarditis by modulating the Th17/regulatory T cell immune response. J Cardiovasc Pharmacol. 2017;69:305–13.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Simpson K, Cunningham M, Lee C, et al. Autoimmunity against the heart and cardiac myosin in children with myocarditis. J Card Fail. 2016;22:520–8.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Dorner A, Kallwellis-Opara A, Pauschinger M, Kuhl U, Schuktheiss H. Cardiac autoantibodies in viral myocarditis. Heart Fail Clin. 2005;1:333–43.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Caforio A, Tona F, Bpttaro S, et al. Clinical implications of anti-heart antibodies in myocarditis and dilated cardiomyopathy. Autoimmunity. 2008;41:36–45.Google Scholar
  64. 64.
    Latva-Horvela J, Kyto V, Saraste A, et al. Development of troponin autoantibodies in experimental coxsackie B3 myocarditis. J Clin Invest. 2009;39:457–62.Google Scholar
  65. 65.
    Rose N, Beisel A, Herskowitz A, et al. Cardiac myosin and autoimmune myocarditis. Ciba Found Symp. 1987;127:3–24.Google Scholar
  66. 66.
    Muller J, Wallukat G, Schimke I. Autoantibodies directed against the β1-adrenergic receptor in patients with dilated cardiomyopathy. J Am Coll Cardiol. 2017;70:808–9.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Wang Z, Liao Y, Dong J, Li S, Wang J, Fu M. Clinical significance and pathogenic role of ant-cardiac myosin antibody in dilated cardiomyopathy. Chin Med J (Engl). 2003;116:499–502.Google Scholar
  68. 68.
    Caforio A, Grazzini M, Mann J, et al. Identification of alpha- and beta-cardiac myosin heavy chain isoforms as major autoantigens in dilated cardiomyopathy. Circulation. 1992;85:1734–42.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Latif N, Baker C, Dunn M, Rose M, Brady P, Yacoub M. Frequency and specificity of anti-heart antibodies in patients with dilated cardiomyopathy detected using SDS-PAGE and western blotting. J Am Coll Cardiol. 1993;22:1378–84.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Neu N, Rose N, Beisel K, Herskowitz G, Gurri-Glass G, Craig S. Cardiac myosin induces myocarditis in genetically predisposed mice. J Immunol. 1987;139:3630–6.PubMedPubMedCentralGoogle Scholar
  71. 71.
    Yuan H, Liao Y, Wang Z, et al. Prevention of myosin induced autoimmune myocarditis in mice by anti-L3 T4 monoclonal antibody. Can J Physiol Pharmacol. 2003;81:84–8.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Chen P, Baldeviano G, Ligons D, et al. Susceptibility to autoimmune myocarditis is associated with intrinsic differences in CD4(+) T cells. Clin Exp Immunol. 2012;169:79–88.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Hwang S, Song K, Lesourne R, et al. Reduced TCR signalling potential impairs negative selection but does not result in autoimmune disease. J Exp Med. 2012;209:1781–95.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Fairweather D, Frisancho-Kiss S, Rose N. Viruses as adjuvants for autoimmunity: evidence from Coxsackievirus induced myocarditis. Rev Med Virol. 2001;15:17–27.CrossRefGoogle Scholar
  75. 75.
    Chapman N, Kim S. Persistent coxsackievirus infection: enterovirus persistence in chronic myocarditis and dilated cardiomyopathy. Curr Top Microbiol Immunol. 2008;323:275–92.PubMedPubMedCentralGoogle Scholar
  76. 76.
    Bowles N, Richardson P, Olsen E, Archard L. Detection of coxsackie-B-Virus specific RNA sequences in myocardial biopsy samples from patients with myocarditis and dilated cardiomyopathy. Lancet. 1986;1:1120–3.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Orinius E. The late cardiac prognosis after Coxsackie-B infection. Acta Med Scand. 1968;183:235–7.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    McWhorter J, LeRoy E. Pericardial disease in scleroderma (systemic sclerosis). Am J Med. 1974;57:566–75.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Morguet A, Sandrock D, Stille-Siegener M, Figulla H. Indium-111-antimyosin Fab imaging to demonstrate myocardial involvement in systemic lupus erythematosus. J Nucl Med. 1995;36:1432–5.PubMedPubMedCentralGoogle Scholar
  80. 80.
    Rossi M, Ramos S. Pathogenesis of chronic Chagas’ myocarditis: an overview. Cardiovasc Pathol. 1996;5:197–202.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Kumar R, Tandon R. Rheumatic fever and rheumatic heart disease: the last 50 years. Indian J Med Res. 2013;13:643–58.Google Scholar
  82. 82.
    Gross L, Ehrlich J. Studies on the myocardial Aschoff body. Am J Pathol. 1934;10:467.PubMedPubMedCentralGoogle Scholar
  83. 83.
    Kuchynka P, Palecek T, Masek M, et al. Current diagnostic and therapeutic aspects of eosinophilic myocarditis. Biomed Res Int. 2016;2016:2828583. Scholar
  84. 84.
    Cooper LT Jr. Myocarditis. N Engl J Med. 2008;360:1526–38.CrossRefGoogle Scholar
  85. 85.
    Baandrup U. Eosinophilic myocarditis. Herz. 2012;37:849–53.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Greco A, Rizzo M, De Virgilio A, et al. Churg-Strauss syndrome. Autoimmun Rev. 2015;14:341–8.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Ogbogu P, Bochner B, Butterfield J, et al. Hypereosinophilic syndrome: a multicentre retrospective analysis of clinical characteristics and response to therapy. J Allergy Clin Immunol. 2009;124:1319–25.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Seguela P, Iriart X, Acar P, Montasudon M, Roudaut R, Thambo J. Eosinophilic cardiac disease: molecular, clinical and imaging aspects. Arch Cardiovasc Dis. 2015;108:258–68.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Baily G. Parasitic infections of the heart. J Infect. 1998;37:2–4.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Cooper L Jr. Giant cell and granulomatous myocarditis. Heart Fail Clin. 2005;1:431–7.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Blauwet L, Cooper L. Idiopathic giant cell myocarditis and cardiac sarcoidosis. Heart Fail Rev. 2013;18:733–46.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Cooper L, Berry G, Shabetai R. Idiopathic giant cell myocarditis - natural history and treatment. N Engl J Med. 1997;336:1860–6.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Sekhri V, Sanal S, Delorenzo L, Aronow W, Maguire G. Cardiac sarcoidosis: a comprehensive review. Arch Med Sci. 2011;7:546–54.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Silverman K, Hutchins G, Bulkley B. Cardiac sarcoid. A clinicopathological evaluation of 84 unselected cases with systemic sarcoidosis. Circulation. 1978;58:1204–11.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Baughman K. Diagnosis of myocarditis – death of Dallas criteria. Circulation. 2006;113:593–5.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.HistopathologyRoyal Papworth HospitalCambridgeUK

Personalised recommendations