Advertisement

Liver Diseases pp 811-827 | Cite as

Future Approaches in Liver Disorders: Regenerative Medicine

  • Mariana Jinga
  • Vasile Daniel Balaban
  • Ecaterina Bontas
  • Ion C. Tintoiu
Chapter

Abstract

End-stage liver disease benefits only from liver transplantation. As we shall see, the emerging field of regenerative medicine offers novel approaches to liver disease treatment based on a remarkable progress in basic biomedical research during the last 20–30 years. In this context, the major methods of regenerative medicine are cell therapy, tissue/organ engineering and bioartificial liver with promising results. At the present time, cell therapy is an important tool to evaluate liver regeneration, hepatoxicity of xenobiotics by CYP enzymes, and drug interactions. Moreover, bioartificial livers can remove the problematic lack of donor liver and allow disease modeling. Ultimately, advancements in liver genome editing might treat either hereditary monogenic liver disorders or viral hepatitis. Herein, we discuss the basic knowledge of liver regeneration and highlight the current methods of liver regenerative medicine.

Keywords

Liver regeneration Cell therapy Hepatocyte-like cells Organoids Bioartificial liver Bioprinted tissues Tissue engineering Gene editing platforms 

Abbreviations

ATF5

Activating Transcription Factor 5

BAL

bioartificial liver

BMPs

bone morphogenetic protein

CEBPA

CCAAT/enhancer binding protein (C/EBP) alpha

CYP

cytochrome P450

DNMTi

DNA methylation inhibitor

EGF

epidermal growth factor

ESCs

embryonic stem cells

FGF

fibroblast growth factor

FGF

fibroblast growth factor

FOXA1

Forkhead Box A1

FOXA2

Forkhead Box A2

FOXA3

Forkhead Box A3

G-CSF

Granulocyte-colony stimulating factor

HDACi

histone deacetylase inhibitor

HGF

hepatocyte growth factor

HLCs

Hepatocyte like-cells

HNF1A

hepatocyte nuclear factor 1 alpha or hepatocyte nuclear factor 1 homeobox alpha

HNF4A

hepatocyte nuclear factor 4 alpha

HSCs

hematopoietic stem cells

IL-6

interleukin-6

iPSCs

induced pluripotent stem cells

LSPCs

liver stem/progenitor cells

MELD

Model For End-Stage Liver Disease

MIR122

MicroRNA 122

MSCs

mesenchymal stem cells

NASH

Nonalcoholic steatohepatitis

OSM

oncostatin M

PPARα

peroxisome proliferator-activated receptor α

PSCs

pluripotent stem cells

TGFα

transforming growth factor

TNFα

tumor necrosis factor alpha

β-PDGRR

platelet-derived growth factors

References

  1. 1.
    Hansel MC, Davila JC, Vosough M, Gramignoli R, Skvorak KJ, Dorko K, Marongiu F, Blake W, Strom SC. The use of induced pluripotent stem cells for the study and treatment of liver diseases. Curr Protoc Toxicol. 2016;67:14.13.1–14.13.27.  https://doi.org/10.1002/0471140856.tx1413s67.CrossRefGoogle Scholar
  2. 2.
    Dianat N, Steichen C, Vallier L, Weber A, Dubart-Kupperschmitt A. Human pluripotent stem cells for modelling human liver diseases and cell therapy. Curr Gene Ther. 2013;13(2):120–32.CrossRefGoogle Scholar
  3. 3.
    Nicolas CT, Hickey RD, Chen HS, Mao SA, Lopera Higuita M, Wang Y, Nyberg SL. Concise review: liver regenerative medicine: from hepatocyte transplantation to bioartificial livers and bioengineered grafts. Stem Cells. 2017;35(1):42–50.  https://doi.org/10.1002/stem.2500.CrossRefPubMedGoogle Scholar
  4. 4.
    Lee CW, Chen YF, Wu HH, Lee OK. Historical perspectives and advances in mesenchymal stem cell research for the treatment of liver diseases. Gastroenterology. 2018;154(1):46–56.  https://doi.org/10.1053/j.gastro.2017.09.049.CrossRefPubMedGoogle Scholar
  5. 5.
    Kholodenko IV, Yarygin KN. Cellular mechanisms of liver regeneration and cell-based therapies of liver diseases. Biomed Res Int. 2017;2017:8910821.  https://doi.org/10.1155/2017/8910821.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Kmiec Z. Cooperation of liver cells in health and disease. Adv Anat Embryol Cell Biol. 2001;161:III–XIII, 1–151.PubMedGoogle Scholar
  7. 7.
    Jacobs F, Gordts SC, Muthuramu I, De Geest B. The liver as a target organ for gene therapy: state of the art, challenges, and future perspectives. Pharmaceuticals (Basel). 2012;5(12):1372–92.  https://doi.org/10.3390/ph5121372.CrossRefGoogle Scholar
  8. 8.
    Miyajima A, Tanaka M, Itoh T. Stem/progenitor cells in liver development, homeostasis, regeneration, and reprogramming. Cell Stem Cell. 2014;14(5):561–74.  https://doi.org/10.1016/j.stem.2014.04.010.CrossRefPubMedGoogle Scholar
  9. 9.
    Kwon YJ, Lee KG, Choi D. Clinical implications of advances in liver regeneration. Clin Mol Hepatol. 2015;21(1):7–13.  https://doi.org/10.3350/cmh.2015.21.1.7.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Lee CA, Sinha S, Fitzpatrick E, Dhawan A. Hepatocyte transplantation and advancements in alternative cell sources for liver-based regenerative medicine. J Mol Med (Berl). 2018;96(6):469–81.  https://doi.org/10.1007/s00109-018-1638-5.CrossRefGoogle Scholar
  11. 11.
    Alwahsh SM, Rashidi H, Hay DC. Liver cell therapy: is this the end of the beginning? Cell Mol Life Sci. 2018;75(8):1307–24.  https://doi.org/10.1007/s00018-017-2713-8.CrossRefPubMedGoogle Scholar
  12. 12.
    Huebert RC, Rakela J. Cellular therapy for liver disease. Mayo Clin Proc. 2014;89(3):414–24.  https://doi.org/10.1016/j.mayocp.2013.10.023.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Overi D, Carpino G, Cardinale V, Franchitto A, Safarikia S, Onori P, Alvaro D, Gaudio E. Contribution of resident stem cells to liver and biliary tree regeneration in human diseases. Int J Mol Sci. 2018;19(10):E2917.  https://doi.org/10.3390/ijms19102917.CrossRefPubMedGoogle Scholar
  14. 14.
    Huppert SS, Campbell KM. Emerging advancements in liver regeneration and organogenesis as tools for liver replacement. Curr Opin Organ Transplant. 2016;21(6):581–7.  https://doi.org/10.1097/MOT.0000000000000365.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Puppi J, et al. Improving the techniques for human hepatocyte transplantation: report from a consensus meeting in London. Cell Transplant. 2012;21(1):1–10.  https://doi.org/10.3727/096368911X566208.CrossRefPubMedGoogle Scholar
  16. 16.
    Forbes SJ, Gupta S, Dhawan A. Cell therapy for liver disease: from liver transplantation to cell factory. J Hepatol. 2015;62(1 Suppl):S157–69.  https://doi.org/10.1016/j.jhep.2015.02.040.CrossRefPubMedGoogle Scholar
  17. 17.
    Rezvani M, Grimm AA, Willenbring H. Assessing the therapeutic potential of lab-made hepatocytes. Hepatology. 2016;64(1):287–94.  https://doi.org/10.1002/hep.28569.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Reid LM. Stem/progenitor cells and reprogramming (plasticity) mechanisms in liver, biliary tree, and pancreas. Hepatology. 2016;64(1):4–7.  https://doi.org/10.1002/hep.28606.CrossRefPubMedGoogle Scholar
  19. 19.
    Wang Y, Yu X, Chen E, Li L. Liver-derived human mesenchymal stem cells: a novel therapeutic source for liver diseases. Stem Cell Res Ther. 2016;7(1):71.  https://doi.org/10.1186/s13287-016-0330-3.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Collin de l’Hortet A, Takeishi K, Guzman-Lepe J, Handa K, Matsubara K, Fukumitsu K, Dorko K, Presnell SC, Yagi H, Soto-Gutierrez A. Liver-regenerative transplantation: regrow and reset. Am J Transplant. 2016;16(6):1688–96.  https://doi.org/10.1111/ajt.13678.CrossRefPubMedGoogle Scholar
  21. 21.
    Chen C, Soto-Gutierrez A, Baptista PM, Spee B. Biotechnology challenges to in vitro maturation of hepatic stem cells. Gastroenterology. 2018;154(5):1258–72.  https://doi.org/10.1053/j.gastro.2018.01.066.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Zakikhan K, Pournasr B, Vosough M, Nassiri-Asl M. In vitro generated hepatocyte-like cells: a novel tool in regenerative medicine and drug discovery. Cell J. 2017;19(2):204–17.  https://doi.org/10.22074/cellj.2016.4362.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Pietrosi G, Vizzini G, Gerlach J, Chinnici C, Luca A, Amico G, et al. Phases I-II matched case-control study of human fetal liver cell transplantation for treatment of chronic liver disease. Cell Transplant. 2015;24(8):1627–38.CrossRefGoogle Scholar
  24. 24.
    Du Y, Wang J, Jia J, Song N, Xiang C, Xu J, et al. Human hepatocytes with drug metabolic function induced from fibroblasts by lineage reprogramming. Cell Stem Cell. 2014;14(3):394–403.CrossRefGoogle Scholar
  25. 25.
    Nishikawa T, Bell A, Brooks JM, et al. Resetting the transcription factor network reverses terminal chronic hepatic failure. J Clin Investig. 2015;125(4):1533–44.CrossRefGoogle Scholar
  26. 26.
    Jang YY, Ye Z. Gene correction in patient-specific iPSCs for therapy development and disease modeling. Hum Genet. 2016;135(9):1041–58.  https://doi.org/10.1007/s00439-016-1691-5.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Gieseck RL III, Colquhoun J, Hannan NR. Disease modeling using human induced pluripotent stem cells: lessons from the liver. Biochim Biophys Acta. 2015;1851(1):76–89.  https://doi.org/10.1016/j.bbalip.2014.05.010.CrossRefPubMedGoogle Scholar
  28. 28.
    Li YH, Xu Y, Wu HM, et al. Umbilical cord-derived mesenchymal stem cell transplantation in hepatitis b virus related acute-on-chronic liver failure treated with plasma exchange and entecavir: a 24-month prospective study. Stem Cell Rev. 2016;12(6):645–53.  https://doi.org/10.1007/s12015-016-9683-3 CrossRefGoogle Scholar
  29. 29.
    Porada CD, Atala AJ, Almeida-Porada G. The hematopoietic system in the context of regenerative medicine. Methods. 2016;99:44–61.  https://doi.org/10.1016/j.ymeth.2015.08.015.CrossRefPubMedGoogle Scholar
  30. 30.
    Davidson MD, Ware BR, Khetani SR. Stem cell-derived liver cells for drug testing and disease modeling. Discov Med. 2015;19(106):349–58.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Sanal MG. Cell therapy from bench to bedside: hepatocytes from fibroblasts - the truth and myth of transdifferentiation. World J Gastroenterol. 2015;21(21):6427–33.  https://doi.org/10.3748/wjg.v21.i21.6427.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Kretzschmar K, Clevers H. Organoids: modeling development and the stem cell niche in a dish. Dev Cell. 2016;38(6):590–600.  https://doi.org/10.1016/j.devcel.2016.08.014.CrossRefPubMedGoogle Scholar
  33. 33.
    Jitraruch S, Dhawan A, Hughes RD, Filippi C, Soong D, Philippeos C, Lehec SC, Heaton ND, Longhi MS, Mitry RR. Alginate microencapsulated hepatocytes optimised for transplantation in acute liver failure. PLoS One. 2014;9(12):e113609.  https://doi.org/10.1371/journal.pone.0113609.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Ogoke O, Oluwole J, Parashurama N. Bioengineering considerations in liver regenerative medicine. J Biol Eng. 2017;11:46.  https://doi.org/10.1186/s13036-017-0081-4.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Sakiyama R, Blau BJ, Miki T. Clinical translation of bioartificial liver support systems with human pluripotent stem cell-derived hepatic cells. World J Gastroenterol. 2017;23(11):1974–9.  https://doi.org/10.3748/wjg.v23.i11.1974.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Ruiz de Galarreta M, Lujambio A. Therapeutic editing of hepatocyte genome in vivo. J Hepatol. 2017;67(4):818–28.  https://doi.org/10.1016/j.jhep.2017.05.012.CrossRefPubMedGoogle Scholar
  37. 37.
    Gonçalves GAR, Paiva RMA. Gene therapy: advances, challenges and perspectives. Einstein (Sao Paulo). 2017;15(3):369–75.  https://doi.org/10.1590/S1679-45082017RB4024.CrossRefGoogle Scholar
  38. 38.
    Kay MA. State-of-the-art gene-based therapies: the road ahead. Nat Rev Genet. 2011;12(5):316–28.CrossRefGoogle Scholar
  39. 39.
    Li H, Haurigot V, Doyon Y, Li T, Wong SY, Bhagwat AS, et al. In vivo genome editing restores haemostasis in a mouse model of haemophilia. Nature. 2011;475:217–21.CrossRefGoogle Scholar
  40. 40.
    Anguela XM, Sharma R, Doyon Y, Miller JC, Li H, Haurigot V, et al. Robust ZFN-mediated genome editing in adult hemophilic mice. Blood. 2013;122:3283–7.CrossRefGoogle Scholar
  41. 41.
    Yin H, Xue W, Chen S, Bogorad RL, Benedetti E, Grompe M, et al. Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nat Biotechnol. 2014;32:551–3.CrossRefGoogle Scholar
  42. 42.
    Yin H, Song CQ, Dorkin JR, Zhu LJ, Li Y, Wu Q, et al. Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo. Nat Biotechnol. 2016;34:328–33.CrossRefGoogle Scholar
  43. 43.
    Ding Q, Strong A, Patel KM, Ng SL, Gosis BS, Regan SN, et al. Permanent alteration of PCSK9 with in vivo CRISPR-Cas9 genome editing. Circ Res. 2014;115:488–92.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Mariana Jinga
    • 1
  • Vasile Daniel Balaban
    • 1
  • Ecaterina Bontas
    • 2
  • Ion C. Tintoiu
    • 3
  1. 1.Central Military Emergency University Hospital “Dr. Carol Davila”Carol Davila University of Medicine and PharmacyBucharestRomania
  2. 2.“Prof. C.C. Iliescu” Emergency Institute for Cardiovascular DiseasesBucharestRomania
  3. 3.Faculty of Medicine, “Carol Davila” Central Military Emergency University Hospital“Titu Maiorescu” UniversityBucharestRomania

Personalised recommendations