Liver Inflammation: Short Uptodate

  • Mariana Mihaila
  • Ecaterina Bontas
  • Cecilia Patru


Without a doubt, the inflammation is a key process in liver pathology. At the same time, it represents the liver response to different and constant types of aggressions such as viral infections, alcohol, and drug-toxicity. According to current evidence, the liver inflammation activates immune cells such as Kupffer cells, innate macrophages, monocytes, natural killer cells, neutrophils and other granulocytes, and dendritic cells. All of them contribute to liver inflammation. Herein, we try to underline the basic knowledge of human liver inflammation.


Inflammation Liver inflammation Immune innate cells Metaflammation Steatosis Steatohepatitis 



Alcoholic liver disease


Dendritic cells


Protein (high-mobility group box-1) or HMG-1 (high—mobility group)1




Nonalcoholic fatty liver disease


Non-alcoholic steatohepatitis


Pathogen Associated Molecular Patterns


The pathogen recognition receptors


Tumor necrosis factor


Conflicts of Interest

The authors declare no conflict of interest.


  1. 1.
    Liaskou E, Wilson DV, Oo YH. Innate immune cells in liver inflammation. Mediat Inflamm. 2012;2012:949157,. 21 pages. Scholar
  2. 2.
    Robinson MW, Harmon C, O’Farrelly C. Liver immunology and its role in inflammation and homeostasis. Cell Mol Immunol. 2016;13(3):267–76. Scholar
  3. 3.
    Pellicoro A, Ramachandran P, Iredale JP, Fallowfield JA. Liver fibrosis and repair: immune regulation of wound healing in a solid organ. Nat Rev Immunol. 2014;14:181–94.CrossRefGoogle Scholar
  4. 4.
    Bourbonnais E, Raymond V-A, Ethier C, Nguyen BN, El-Leil MS, Meloche S, et al. Liver fibrosis protects mice from acute hepatocellular injury. Gastroenterology. 2012;142:130–9.CrossRefGoogle Scholar
  5. 5.
    Invernizzi P. Liver auto-immunology: the paradox of autoimmunity in a tolerogenic organ. J Autoimmun. 2013 Oct;46:1–6. Scholar
  6. 6.
    Gomez Perdiguero E, et al. Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature. 2015;518(7540):547–51.CrossRefGoogle Scholar
  7. 7.
    Koyama Y, Brenner D. Liver inflammation and fibrosis. J Clin Invest. 2017;127(1):55–64.CrossRefGoogle Scholar
  8. 8.
    Tau Q, Hu J, Yu X, Lu H, Yu Y, Yu Y, Zang G, Tang Z. The role of IL-1 family members and Kupffer cells in liver regeneration. Biomed Res Int. 2016;2016(1):1–6.Google Scholar
  9. 9.
    Zhang F, Wang H, Wang X, Jiang G, Liu H, Zhang G, Wang H, Fang R, Bu X, Cai S, Du J. TGF-β induces M2-like macrophage polarization via SNAIL-mediated suppression of a pro-inflammatory phenotype. Oncotarget. 2016;7(32):52294–306.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Kayama Y, Brenner D. Liver inflammation and fibrosis. J ClinInvest. 2017;127(1):55–64.Google Scholar
  11. 11.
    Gao B, Radaeva S, Park O. Liver natural killer and natural killer T cells: immunobiology and emerging roles in liver disease. J Leukoc Biol. 2009;86(3):513–28.CrossRefGoogle Scholar
  12. 12.
    Wang H, Yin S. Natural killer T cells in liver injury, inflammation and cancer. Expert Rev Gastroenterol Hepatol. 2015;9(8):1077–85.CrossRefGoogle Scholar
  13. 13.
    Minagawa M, Deng Q, Liu ZX, Tsukamoto H, Dennert G. Activated natural killer T cells induce liver injury by Fas and tumor necrosis factor-alpha during alcohol consumption. Gastroenterology. 2004;126(5):1387–99.CrossRefGoogle Scholar
  14. 14.
    Jaruga B, Hong F, Kim WH, Sun R, Fan S, Gao B. Chronic alcohol consumption accelerates liver injury in T cell-mediated hepatitis: alcohol disregulation of NF-kappaB and STAT3 signaling pathways. Am J Physiol Gastrointest Liver Physiol. 2004;287(2):G471–9.CrossRefGoogle Scholar
  15. 15.
    Park O, Wang L, Jeong W, Wang H, Lian Z, Gershwin M, Gao B. Diverse roles of invariant natural killer T cells in liver injury and fibrosis induced by carbon tetrachloride. Hepatology. 2009;49:1683–94.CrossRefGoogle Scholar
  16. 16.
    Dusseaux M, Martin E, Serriari N, Péguillet I, Premel V, Louis D, Milder M, Le Bourhis L, Soudais C, Treiner E, Lantz O. Human MAIT cells are xenobiotic-resistant, tissue-targeted, CD161hi IL-17-secreting T cells. Blood. 2011;117(4):1250–9.CrossRefGoogle Scholar
  17. 17.
    van Wilgenburg B, Scherwitzl I, Hutchinson EC, Leng T, Kurioka A, Kulicke C, et al. MAIT cells are activated during human viral infections. Nat Commun. 2016;7(11653):20.Google Scholar
  18. 18.
    Hengst J, Strunz B, Deterding K, Ljunggren H-G, Leeansyah E, Manns MP, et al. Nonreversible MAIT cell-dysfunction in chronic hepatitis C virus infection despite successful interferon-free therapy. Eur J Immunol. 2016;46(9):2204–1.CrossRefGoogle Scholar
  19. 19.
    Magalhaes I, Pingris K, Poitou C, Bessoles S, Venteclef N, Kiaf B, Beaudoin L. Mucosal-associated invariant T cell alterations in obese and type 2 diabetic patients. J Clin Invest. 2015;125:1752–62.CrossRefGoogle Scholar
  20. 20.
    Kurioka A, Walker LJ, Klenerman P, Willberg CB. MAIT cells: new guardians of the liver. Clin Transl Immunol. 2016;5(8):e98.CrossRefGoogle Scholar
  21. 21.
    Hellerbrand C, Stefanovic B, Giordano F, Burchardt ER, Brenner DA. The role of TGFbeta1 in initiating hepatic stellate cell activation in vivo. J Hepatol. 1999;30:77–87.CrossRefGoogle Scholar
  22. 22.
    Jaeschke H. Mechanisms of liver injury. II. Mechanisms of neutrophil-induced liver cell injury during hepatic ischemia-reperfusion and other acute inflammatory conditions. Am J Physiol Gastrointest Liver Physiol. 2006;290(6):G1083–8. Scholar
  23. 23.
    Yang H, Wang H, Chavan SS, Andersson V. High Mobility Group Box Protein1 (HMGB1): the prototypical endogenous danger molecule. Mol Med. 2015;21(Suppl 1):S6–S12.CrossRefGoogle Scholar
  24. 24.
    Huebener P, et al. The HMGB1/RAGE axis triggers neutrophil-mediated injury amplification following necrosis. J Clin Invest. 2015;125(2):539–50.CrossRefGoogle Scholar
  25. 25.
    Giordano DM, Pinto C, Maroni L, Benedetti A, Marzioni M. Inflammation and the gut-liver axis in the pathophysiology of cholangiopathies. Int J Mol Sci. 2018;19(10):3003. Scholar
  26. 26.
    Cabezas J, Mayorga M, Crespo J (2012). Nonalcoholic fatty liver disease: a pathological view, liver biopsy, Nobumi Tagaya, IntechOpen. Available from: Scholar
  27. 27.
    Caputo T, Gilardi F, Desvergne B. From chronic overnutrition to metaflammation and insulin resistance: adipose tissue and liver contributions. FEBS Lett. 2017;591(19):3061–88. Scholar
  28. 28.
    Parkash O, Saeed S (2018). Molecular basis for pathogenesis of steatohepatitis: contemporary understanding and new insights, non-alcoholic fatty liver disease, Rodrigo Valenzuela, IntechOpen. Available from: Scholar
  29. 29.
    Tilg H, Moschen AR. Evolution of inflammation in nonalcoholic fatty liver disease: the multiple parallel hits hypothesis. Hepatology. 2010;52(5):1836–46.CrossRefGoogle Scholar
  30. 30.
    Kleiner DE, Brunt EM, Van Natta M, Behling C, Contos MJ, Cummings OW, et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology. 2005;41(6):1313–21.CrossRefGoogle Scholar
  31. 31.
    Chalasani N, Wilson L, Kleiner DE, Cummings OW, Brunt EM, Unalp A. Relationship of steatosis grade and zonal location to histological features of steatohepatitis in adult patients with non-alcoholic fatty liver disease. J Hepatol. 2008;48(5):829–34.CrossRefGoogle Scholar
  32. 32.
    Malhi H, Gores GJ, Lemasters JJ. Apoptosis and necrosis in the liver: a tale of two deaths? Hepatology. 2006;43(2 Suppl 1):S31–44.CrossRefGoogle Scholar
  33. 33.
    Minohara S, Bae SK, Sugiyama S, Shibata N, Gushima T, Motoshita J, Shimoda S, Takagi A, Ikeda Y, Takahashi K. A case of non-alcoholic steatohepatitis complicated with severe acute pancreatitis induced by decreased lipoprotein lipase and hepatic triglyceride lipase activity levels in a young Japanese woman. Clin Case Rep. 2018;6(9):1769–73. Scholar
  34. 34.
    Buechter M, Gerken G, Hoyer DP, Bertram S, Theysohn JM, Thodou V, Kahraman A. Liver maximum capacity (LiMAx) test as a helpful prognostic tool in acute liver failure with sepsis: a case report. BMC Anesthesiol. 2018;18(1):71. Scholar
  35. 35.
    Ibrahim SH, Hirsova P, Gores GJ. Non-alcoholic steatohepatitis pathogenesis: sublethal hepatocyte injury as a driver of liver inflammation. Gut. 2018;67(5):963–72. Scholar
  36. 36.
    Matteoni CA, Younossi ZM, Gramlich T, Boparai N, Liu YC, McCullough AJ. Nonalcoholic fatty liver disease: a spectrum of clinical and pathological severity. Gastroenterology. 1999;116(6):1413–9.CrossRefGoogle Scholar
  37. 37.
    Younossi ZM, Stepanova M, Rafiq N, Makhlouf H, Younoszai Z, Agrawal R, et al. Pathologic criteria for nonalcoholic steatohepatitis: interprotocol agreement and ability to predict liver-related mortality. Hepatology. 2011;53(6):1874–82.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Mariana Mihaila
    • 1
  • Ecaterina Bontas
    • 2
  • Cecilia Patru
    • 3
  1. 1.Fundeni Clinical InstituteBucureștiRomania
  2. 2.“Prof. C.C. Iliescu” Emergency Institute for Cardiovascular DiseasesBucharestRomania
  3. 3.“Carol Davila” Central Military Emergency University HospitalBucharestRomania

Personalised recommendations