Advertisement

Liver Diseases pp 261-272 | Cite as

The Paucity of Interlobular Bile Ducts

  • Consolato M. SergiEmail author
Chapter

Abstract

The remodeling of interlobular bile ducts is a fascinating interplay in the perinatal liver. There are excretory structures that need to be built to drain bile from the hepatocytes. These structures are vital for the wellbeing of the organism and are built during the ontogenesis of the liver, which plays a major role in life. The bile flows from the bile canaliculus of two adjacent hepatocytes through the Hering’s canals into the interlobular bile ducts, which are in the portal triads between the hepatic lobules. The interlobular bile ducts will transfer the bile to segmental bile ducts and major bile ducts, which converge into the right and left major bile ducts. Finally, the bile reaches the common bile duct and ductus choledochus following joining with the cystic duct of the gallbladder. The ductus choledochus discharges at the duodenal papilla. The proper remodeling of the primitive (embryonic) ductal plate of the liver is at the basis of the formation of the interlobular bile ducts, which are positioned about three diameters from the portal artery and lined by healthy cholangiocytes. A paucity of the interlobular bile ducts (PIBD) is defined as an interlobular bile duct to portal tract (IBD/PT) ratio of 0.5 or less in a needle liver biopsy. In this chapter, the paucity of interlobular bile ducts is reviewed into three paragraphs, including the cholangiocyte structure, the ductal plate remodeling of the liver, and the clinical and genetic syndromes associated with the lack or scarcity of the IBDs.

Keywords

Liver Ductal plate Cholangiocyte Paucity Interlobular bile ducts Genetics Dysmorphology 

References

  1. 1.
    Roberts SK, Ludwig J, Larusso NF. The pathobiology of biliary epithelia. Gastroenterology. 1997;112(1):269–79.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Bongiovanni AM. Bile acid content of gallbladder of infants, children and adults. J Clin Endocrinol Metab. 1965;25:678–85.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    deBelle RC, Blacklow NR, Baylan M, Little JM, Lester R. Bile acid conjugation in fetal hepatic organ cultures. Am J Phys. 1976;231(4):1124–8.CrossRefGoogle Scholar
  4. 4.
    Danielsson H, Rutter WJ. The metabolism of bile acids in the developing rat liver. Biochemistry. 1968;7(1):346–52.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Sergi C, Benstz J, Feist D, Nutzenadel W, Otto HF, Hofmann WJ. Bile duct to portal space ratio and ductal plate remnants in liver disease of infants aged less than 1 year. Pathology. 2008;40(3):260–7.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Sergi C, Adam S, Kahl P, Otto HF. Study of the malformation of ductal plate of the liver in Meckel syndrome and review of other syndromes presenting with this anomaly. Pediatr Dev Pathol. 2000;3(6):568–83.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Sergi C, Adam S, Kahl P, Otto HF. The remodeling of the primitive human biliary system. Early Hum Dev. 2000;58(3):167–78.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Sergi C, Kahl P, Otto HF. Contribution of apoptosis and apoptosis-related proteins to the malformation of the primitive intrahepatic biliary system in Meckel syndrome. Am J Pathol. 2000;156(5):1589–98.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Hammar JA. Uber die erste Entstehung der nicht kapillaren intrahepatischen Gallengange beim Menschen. Z Mikrosk Anat Forsch. 1926;5:59–89.Google Scholar
  10. 10.
    Desmet VJ. Embryology of the liver and intrahepatic biliary tract, and an overview of malformations of the bile duct. In: Bircher J, Benhamou JP, McIntyre N, Rizzetto M, Rhodes J, editors. The Oxford textbook of clinical hepatology. 2nd ed. Oxford: Oxford University Press; 1999. p. 51–61.Google Scholar
  11. 11.
    Roskams T, Desmet V. Embryology of extra- and intrahepatic bile ducts, the ductal plate. Anat Rec (Hoboken). 2008;291(6):628–35.CrossRefGoogle Scholar
  12. 12.
    Desmet VJ, van Eyken P, Roskams T. Histopathology of vanishing bile duct diseases. Adv Clin Pathol. 1998;2(2):87–99.Google Scholar
  13. 13.
    Desmet VJ. The amazing universe of hepatic microstructure. Hepatology. 2009;50(2):333–44.PubMedCrossRefGoogle Scholar
  14. 14.
    Desmet VJ. Congenital diseases of intrahepatic bile ducts: variations on the theme “ductal plate malformation”. Hepatology. 1992;16(4):1069–83.PubMedCrossRefGoogle Scholar
  15. 15.
    Hamilton PW, Allen DC. Morphometry in histopathology. J Pathol. 1995;175(4):369–79.PubMedCrossRefGoogle Scholar
  16. 16.
    Amella C, Cappello F, Kahl P, Fritsch H, Lozanoff S, Sergi C. Spatial and temporal dynamics of innervation during the development of fetal human pancreas. Neuroscience. 2008;154(4):1477–87.PubMedCrossRefGoogle Scholar
  17. 17.
    Snover DC. Biopsy diagnosis of liver disease. Netherlands: Wolters Kluwer; 1991, 300p.Google Scholar
  18. 18.
    Dorn L, Menezes LF, Mikuz G, Otto HF, Onuchic LF, Sergi C. Immunohistochemical detection of polyductin and co-localization with liver progenitor cell markers during normal and abnormal development of the intrahepatic biliary system and in adult hepatobiliary carcinomas. J Cell Mol Med. 2009;13(7):1279–90.PubMedCrossRefGoogle Scholar
  19. 19.
    Johnson CA, Gissen P, Sergi C. Molecular pathology and genetics of congenital hepatorenal fibrocystic syndromes. J Med Genet. 2003;40(5):311–9.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Hadchouel M. Paucity of interlobular bile ducts. Semin Diagn Pathol. 1992;9(1):24–30.PubMedGoogle Scholar
  21. 21.
    Hadchouel M, Hugon RN, Gautier M. Reduced ratio of portal tracts to paucity of intrahepatic bile ducts. Arch Pathol Lab Med. 1978;102(8):402.PubMedGoogle Scholar
  22. 22.
    MacMahon HE, Thannhauser SJ. Congenital dysplasia of the interlobular bile ducts with extensive skin xanthomata; congenital acholangic biliary cirrhosis. Gastroenterology. 1952;21(4):488–506.PubMedCrossRefGoogle Scholar
  23. 23.
    Witzleben CL. Bile duct paucity (“intrahepatic atresia”). Perspect Pediatr Pathol. 1982;7:185–201.PubMedGoogle Scholar
  24. 24.
    Kahn E. Paucity of interlobular bile ducts. Arteriohepatic dysplasia and nonsyndromic duct paucity. Perspect Pediatr Pathol. 1991;14:168–215.PubMedGoogle Scholar
  25. 25.
    Alagille D. Intrahepatic biliary atresia (hepatic ductular hypoplasia). In: Berenberg SR, editor. Liver diseases in infancy and childhood. Dordrecht: Martinus Nijhoff; 1976. p. 129–42.CrossRefGoogle Scholar
  26. 26.
    Kahn E, Markowitz J, Aiges H, Daum F. Human ontogeny of the bile duct to portal space ratio. Hepatology. 1989;10(1):21–3.PubMedCrossRefGoogle Scholar
  27. 27.
    Vogel M. Atlas der morphologischen Plazentadiagnostik. Berlin: Springer; 1996, 263p.CrossRefGoogle Scholar
  28. 28.
    Costa AM, Pegado CS, Porto LC. Quantification of the intrahepatic biliary tree during human fetal development. Anat Rec. 1998;251(3):297–302.PubMedCrossRefGoogle Scholar
  29. 29.
    Fabbretti G, Sergi C, Consalez G, Faa G, Brisigotti M, Romeo G, et al. Genetic variants of alpha-1-antitrypsin (AAT). Liver. 1992;12(4 Pt 2):296–301.PubMedGoogle Scholar
  30. 30.
    Sergi C, Bahitham W, Al-Bahrani R. Bile duct paucity in infancy. In: Mizuguchi Y, editor. Liver biopsy in modern medicine. London, UK: IntechOpen; 2011. p. 205–304.Google Scholar
  31. 31.
    Fargion S, Bissoli F, Fracanzani AL, Suigo E, Sergi C, Taioli E, et al. No association between genetic hemochromatosis and alpha1-antitrypsin deficiency. Hepatology. 1996;24(5):1161–4.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Fargion S, Sergi C, Bissoli F, Fracanzani AL, Suigo E, Carazzone A, et al. Lack of association between porphyria cutanea tarda and alpha 1-antitrypsin deficiency. Eur J Gastroenterol Hepatol. 1996;8(4):387–91.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Sergi C, Consalez GG, Fabbretti G, Brisigotti M, Faa G, Costa V, et al. Immunohistochemical and genetic characterization of the M Cagliari alpha-1-antitrypsin molecule (M-like alpha-1-antitrypsin deficiency). Lab Investig. 1994;70(1):130–3.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Warren M, Mierau G, Wartchow EP, Shimada H, Yano S. Histologic and ultrastructural features in early and advanced phases of Zellweger spectrum disorder (infantile Refsum disease). Ultrastruct Pathol. 2018;42(3):220–7.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Depreter M, Espeel M, Roels F. Human peroxisomal disorders. Microsc Res Tech. 2003;61(2):203–23.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Espeel M, Roels F, Giros M, Mandel H, Peltier A, Poggi F, et al. Immunolocalization of a 43 kDa peroxisomal membrane protein in the liver of patients with generalized peroxisomal disorders. Eur J Cell Biol. 1995;67(4):319–27.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Khan A, Sergi C. Sialidosis: a review of morphology and molecular biology of a rare pediatric disorder. Diagnostics (Basel). 2018;8(2)  https://doi.org/10.3390/diagnostics8020029.PubMedCentralCrossRefGoogle Scholar
  38. 38.
    Sergi C, Penzel R, Uhl J, Zoubaa S, Dietrich H, Decker N, et al. Prenatal diagnosis and fetal pathology in a Turkish family harboring a novel nonsense mutation in the lysosomal alpha-N-acetyl-neuraminidase (sialidase) gene. Hum Genet. 2001;109(4):421–8.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Sergi C, Beedgen B, Kopitz J, Zilow E, Zoubaa S, Otto HF, et al. Refractory congenital ascites as a manifestation of neonatal sialidosis: clinical, biochemical and morphological studies in a newborn Syrian male infant. Am J Perinatol. 1999;16(3):133–41.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Sergi C. Transmission electron microscopy of pediatric small round blue cell tumors. In: Méndez-Vilas A, editor. Microscopy science: last approaches on educational programs and applied research. Spain: Formatex Research Center; 2018.Google Scholar
  41. 41.
    Crosnier C, Lykavieris P, Meunier-Rotival M, Hadchouel M. Alagille syndrome. The widening spectrum of arteriohepatic dysplasia. Clin Liver Dis. 2000;4(4):765–78.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Duque Lasio ML, Kozel BA. Elastin-driven genetic diseases. Matrix Biol. 2018;71–72:144–60.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Sakhuja P, Whyte H, Kamath B, Martin N, Chitayat D. Williams syndrome presenting with findings consistent with Alagille syndrome. Clin Case Rep. 2015;3(1):24–8.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Snover DC. Problems in the interpretation of liver biopsies after liver transplantation. Am J Surg Pathol. 1989;13(Suppl 1):31–8.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Demetris AJ, Jaffe R, Starzl TE. A review of adult and pediatric post-transplant liver pathology. Pathol Annu. 1987;22(Pt 2):347–86.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Watson GH, Miller V. Arteriohepatic dysplasia: familial pulmonary arterial stenosis with neonatal liver disease. Arch Dis Child. 1973;48(6):459–66.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Alagille D, Odievre M, Gautier M, Dommergues JP. Hepatic ductular hypoplasia associated with characteristic facies, vertebral malformations, retarded physical, mental, and sexual development, and cardiac murmur. J Pediatr. 1975;86(1):63–71.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Meunier-Rotival M, Hadchouel M. Alagille syndrome (AGS). Atlas Genet Cytogenet Oncol Haematol [Internet]. 21 Oct 2005, 2007. Available from: http://AtlasGeneticsOncology.org/Kprones/AlagilleID10090.html.
  49. 49.
    Ripka S, Gress TM. CLDN4 (claudin-4). Atlas Genet Cytogenet Oncol Haematol [Internet]. 12 Oct 2006, 2018; 10(2):77–8. Available from: http://AtlasGeneticsOncology.org/Genes/CLDN4ID42975ch7q11.html.
  50. 50.
    O’Reilly K, Ahmed SF, Murday V, McGrogan P. Biliary hypoplasia in Williams syndrome. Arch Dis Child. 2006;91(5):420–1.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Copelovitch L, O’Brien MM, Guttenberg M, Otto EA, Kaplan BS. Renal-hepatic-pancreatic dysplasia: a sibship with skeletal and central nervous system anomalies and NPHP3 mutation. Am J Med Genet A. 2013;161A(7):1743–9.PubMedCrossRefGoogle Scholar
  52. 52.
    Villeneuve J, Pelluard-Nehme F, Combe C, Carles D, Chaponnier C, Ripoche J, et al. Immunohistochemical study of the phenotypic change of the mesenchymal cells during portal tract maturation in normal and fibrous (ductal plate malformation) fetal liver. Comp Hepatol. 2009;8:5.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Awasthi A, Das A, Srinivasan R, Joshi K. Morphological and immunohistochemical analysis of ductal plate malformation: correlation with fetal liver. Histopathology. 2004;45(3):260–7.PubMedCrossRefGoogle Scholar
  54. 54.
    Devriendt K, Dooms L, Proesmans W, de Zegher F, Desmet V, Eggermont E. Paucity of intrahepatic bile ducts, solitary kidney and atrophic pancreas with diabetes mellitus: atypical Alagille syndrome? Eur J Pediatr. 1996;155(2):87–90.PubMedCrossRefGoogle Scholar
  55. 55.
    Bernstein J, Chandra M, Creswell J, Kahn E, Malouf NN, McVicar M, et al. Renal-hepatic-pancreatic dysplasia: a syndrome reconsidered. Am J Med Genet. 1987;26(2):391–403.PubMedCrossRefGoogle Scholar
  56. 56.
    Steinberg SJ, Raymond GV, Braverman NE, Moser AB. Zellweger spectrum disorder. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K, et al., editors. GeneReviews® [Internet]. Seattle, WA: University of Washington, Seattle; 1993.Google Scholar
  57. 57.
    Eyssen H, Eggermont E, van Eldere J, Jaeken J, Parmentier G, Janssen G. Bile acid abnormalities and the diagnosis of cerebro-hepato-renal syndrome (Zellweger syndrome). Acta Paediatr Scand. 1985;74(4):539–44.PubMedCrossRefGoogle Scholar
  58. 58.
    Hanson RF, Isenberg JN, Williams GC, Hachey D, Szczepanik P, Klein PD, et al. The metabolism of 3alpha, 7alpha, 12alpha-trihydorxy-5beta-cholestan-26-oic acid in two siblings with cholestasis due to intrahepatic bile duct anomalies. An apparent inborn error of cholic acid synthesis. J Clin Invest. 1975;56(3):577–87.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Setchell KD, Street JM. Inborn errors of bile acid synthesis. Semin Liver Dis. 1987;7(2):85–99.PubMedCrossRefGoogle Scholar
  60. 60.
    Gardner LI. Letter: Intrahepatic bile stasis in 45,X Turner’s syndrome. N Engl J Med. 1974;290(7):406.PubMedGoogle Scholar
  61. 61.
    Molland EA, Purcell M. Biliary atresia and the Dandy-Walker anomaly in a neonate with 45,X Turner’s syndrome. J Pathol. 1975;115(4):227–30.PubMedCrossRefGoogle Scholar
  62. 62.
    Alpert LI, Strauss L, Hirschhorn K. Neonatal hepatitis and biliary atresia associated with trisomy 17-18 syndrome. N Engl J Med. 1969;280(1):16–20.PubMedCrossRefGoogle Scholar
  63. 63.
    Puri P, Guiney EJ. Intrahepatic biliary atresia in Down’s syndrome. J Pediatr Surg. 1975;10(3):423–4.PubMedCrossRefGoogle Scholar
  64. 64.
    Alagille D. Alpha-1-antitrypsin deficiency. Hepatology. 1984;4(1 Suppl):11S–4S.PubMedCrossRefGoogle Scholar
  65. 65.
    Dorney SF, Hassall EG, Arbuckle SM, Vargas JH, Berquist WE. SZ phenotype alpha-1-antitrypsin deficiency with paucity of the interlobular bile ducts. Aust Paediatr J. 1987;23(1):55–6.PubMedGoogle Scholar
  66. 66.
    Filipponi F, Soubrane O, Labrousse F, Devictor D, Bernard O, Valayer J, et al. Liver transplantation for end-stage liver disease associated with alpha-1-antitrypsin deficiency in children: pretransplant natural history, timing and results of transplantation. J Hepatol. 1994;20(1):72–8.PubMedCrossRefGoogle Scholar
  67. 67.
    Malone M, Mieli-Vergani G, Mowat AP, Portmann B. The fetal liver in PiZZ alpha-1-antitrypsin deficiency: a report of five cases. Pediatr Pathol. 1989;9(6):623–31.PubMedCrossRefGoogle Scholar
  68. 68.
    Spada F, Candiano G, Sergi C, Ghiggeri GM, Callea F, Gusmano R. Purification of alpha-1-antitrypsin monomer by preparative electrophoresis. J Clin Pathol. 1994;47(7):661–3.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Debray D, Narkewicz MR, Bodewes F, Colombo C, Housset C, de Jonge HR, et al. Cystic fibrosis-related liver disease: research challenges and future perspectives. J Pediatr Gastroenterol Nutr. 2017;65(4):443–8.PubMedCrossRefGoogle Scholar
  70. 70.
    Staufer K, Halilbasic E, Trauner M, Kazemi-Shirazi L. Cystic fibrosis related liver disease—another black box in hepatology. Int J Mol Sci. 2014;15(8):13529–49.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Costa PC, Barreto CC, Pereira L, Lobo ML, Costa MA, Lopes AI. Cystic fibrosis-related liver disease: a single-center experience. Pediatr Rep. 2011;3(3):e21.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Kamal N, Surana P, Koh C. Liver disease in patients with cystic fibrosis. Curr Opin Gastroenterol. 2018;34(3):146–51.PubMedPubMedCentralGoogle Scholar
  73. 73.
    Furuya KN, Roberts EA, Canny GJ, Phillips MJ. Neonatal hepatitis syndrome with paucity of interlobular bile ducts in cystic fibrosis. J Pediatr Gastroenterol Nutr. 1991;12(1):127–30.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Colombo C, Battezzati PM, Crosignani A, Morabito A, Costantini D, Padoan R, et al. Liver disease in cystic fibrosis: a prospective study on incidence, risk factors, and outcome. Hepatology. 2002;36(6):1374–82.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Rowland M, Gallagher C, Gallagher CG, Laoide RO, Canny G, Broderick AM, et al. Outcome in patients with cystic fibrosis liver disease. J Cyst Fibros. 2015;14(1):120–6.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Leung AK, Hon KL, Leong KF, Sergi CM. Measles: a disease often forgotten but not gone. Hong Kong Med J. 2018;24:512–20.PubMedPubMedCentralGoogle Scholar
  77. 77.
    Kage M, Kosai K, Kojiro M, Nakamura Y, Fukuda S. Infantile cholestasis due to cytomegalovirus infection of the liver. A possible cause of paucity of interlobular bile ducts. Arch Pathol Lab Med. 1993;117(9):942–4.PubMedPubMedCentralGoogle Scholar
  78. 78.
    Stern H, Tucker SM. Cytomegalovirus infection in the newborn and in early childhood. Three atypical cases. Lancet. 1965;2(7425):1268–71.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    O’Grady JG, Alexander GJ, Sutherland S, Donaldson PT, Harvey F, Portmann B, et al. Cytomegalovirus infection and donor/recipient HLA antigens: interdependent co-factors in pathogenesis of vanishing bile-duct syndrome after liver transplantation. Lancet. 1988;2(8606):302–5.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Strauss L, Bernstein J. Neonatal hepatitis in congenital rubella. A histopathological study. Arch Pathol. 1968;86(3):317–27.PubMedGoogle Scholar
  81. 81.
    Huang YH, Shih HH, Tiao MM, Huang CC, Kuo KC, Huang FC, et al. Toll-like receptor 7 agonist induces hypoplasia of the biliary system in a neonatal mouse model. J Microbiol Immunol Infect. 2018;51(2):166–73.PubMedCrossRefGoogle Scholar
  82. 82.
    Hertel PM, Estes MK. Rotavirus and biliary atresia: can causation be proven? Curr Opin Gastroenterol. 2012;28(1):10–7.PubMedCrossRefGoogle Scholar
  83. 83.
    Hicks J, Barrish J, Zhu SH. Neonatal syncytial giant cell hepatitis with paramyxoviral-like inclusions. Ultrastruct Pathol. 2001;25(1):65–71.PubMedCrossRefGoogle Scholar
  84. 84.
    Perrini S, Guidi B, Torelli P, Forte A. Parvovirus B19 associated acute cholestatic hepatitis. Pediatr Med Chir. 2014;36(5–6):102.PubMedPubMedCentralGoogle Scholar
  85. 85.
    Ferrante L, Rubaltelli FF. Intrahepatic biliary atresia associated with the presence of Australia-antigen. Padiatr Padol. 1971;6(3):225–9.PubMedPubMedCentralGoogle Scholar
  86. 86.
    Bader-Meunier B, Hadchouel M, Fabre M, Arnoud MD, Dommergues JP. Intrahepatic bile duct damage in children with Kawasaki disease. J Pediatr. 1992;120(5):750–2.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Tam PKH, Yiu RS, Lendahl U, Andersson ER. Cholangiopathies – towards a molecular understanding. EBioMedicine. 2018;35:381–93.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Amedee-Manesme O, Bernard O, Brunelle F, Hadchouel M, Polonovski C, Baudon JJ, et al. Sclerosing cholangitis with neonatal onset. J Pediatr. 1987;111(2):225–9.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Grammatikopoulos T, Sambrotta M, Strautnieks S, Foskett P, Knisely AS, Wagner B, et al. Mutations in DCDC2 (doublecortin domain containing protein 2) in neonatal sclerosing cholangitis. J Hepatol. 2016;65(6):1179–87.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Yu TW, Mochida GH, Tischfield DJ, Sgaier SK, Flores-Sarnat L, Sergi CM, et al. Mutations in WDR62, encoding a centrosome-associated protein, cause microcephaly with simplified gyri and abnormal cortical architecture. Nat Genet. 2010;42(11):1015–20.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Cooke KR, Luznik L, Sarantopoulos S, Hakim FT, Jagasia M, Fowler DH, et al. The biology of chronic graft-versus-host disease: a task force report from the National Institutes of Health consensus development project on criteria for clinical trials in chronic graft-versus-host disease. Biol Blood Marrow Transplant. 2017;23(2):211–34.PubMedCrossRefGoogle Scholar
  92. 92.
    Oguma S, Belle S, Starzl TE, Demetris AJ. A histometric analysis of chronically rejected human liver allografts: insights into the mechanisms of bile duct loss: direct immunologic and ischemic factors. Hepatology. 1989;9(2):204–9.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Byrnes K, Oshima K. Liver transplant pathology: a timeline based approach and review. Diagn Histopathol. 2018;24:508–13.  https://doi.org/10.1016/j.mpdhp.2018.09.002.CrossRefGoogle Scholar
  94. 94.
    Demetris AJ, Bellamy C, Hubscher SG, O’Leary J, Randhawa PS, Feng S, et al. 2016 comprehensive update of the Banff working group on liver allograft pathology: introduction of antibody-mediated rejection. Am J Transplant. 2016;16(10):2816–35.PubMedCrossRefGoogle Scholar
  95. 95.
    NLM. Progressive Familial Intrahepatic Cholestasis. 9 Oct 2018. In: Genetics home reference [Internet]. Lister Hill National Center for Biomedical Communications, National Library of Medicine (US), National Institutes of Health, Department of Health & Human Services. Available from: https://ghr.nlm.nih.gov/condition/progressive-familial-intrahepatic-cholestasis.
  96. 96.
    Oude Elferink RP, Kremer AE, Martens JJ, Beuers UH. The molecular mechanism of cholestatic pruritus. Dig Dis. 2011;29(1):66–71.PubMedCrossRefGoogle Scholar
  97. 97.
    Mirza R, Abbas Z, Luck NH, Azam SM, Aziz S, Hassan SM, et al. Progressive familial intrahepatic cholestasis. J Coll Physicians Surg Pak. 2006;16(10):673–5.PubMedGoogle Scholar
  98. 98.
    Yehezkely-Schildkraut V, Munichor M, Mandel H, Berkowitz D, Hartman C, Eshach-Adiv O, et al. Nonsyndromic paucity of interlobular bile ducts: report of 10 patients. J Pediatr Gastroenterol Nutr. 2003;37(5):546–9.PubMedCrossRefGoogle Scholar
  99. 99.
    Jacquemin E. Progressive familial intrahepatic cholestasis. Clin Res Hepatol Gastroenterol. 2012;36(Suppl 1):S26–35.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Laboratory Medicine and PathologyUniversity of AlbertaEdmontonCanada
  2. 2.Stollery Children’s HospitalEdmontonCanada

Personalised recommendations