Examining the Underlying Attitudinal Components Driving Technology Adoption, Adaptation Behaviour and Outcome in Entirety

  • Syed S. MuhammadEmail author
  • Bidit Dey
  • Sharifah Alwi
  • Mujahid Mohiuddin Babu
Part of the Advances in Theory and Practice of Emerging Markets book series (ATPEM)


Technology use, adoption and adaptation have been discussed extensively in existing scholarly works but scant consideration is given to technology adoption, adaptation and appropriation. This chapter endeavours to address this gap in the literature by conducting a critical review of the scholarly works to examine the underlying antecedents and discrete adaptation behaviour (the entirety of technology adoption, adaptation and appropriation). The findings of this review reveal that such entirety has the following key underlying joint attitudinal cognitive (perceived opportunity, perceived relative advantage, perceived social influence, perceived control) and affective (enjoyment, self-enhancement, threat, fear and trust) components as antecedents to interaction and leading to discrete adaptation and appropriation behaviour of exploration to maximise and exploitation to satisfice technology benefits on the one hand and exploration to revert from technology to complete abandoning of technology on the other. The conceptual underpinning presented and analysed in this chapter advances the scholarship of technology adoption, adaptation and appropriation in entirety and provides useful direction for future empirical research for both academics and practitioners.


Technology Adoption Adaptation and appropriation 


  1. Agarwal, R., & Prasad, J. (1999). Are individual differences germane to the acceptance of new information technologies? Decision Sciences, 30(2), 361–391.CrossRefGoogle Scholar
  2. Agarwal, N., Chauhan, S., Kar, A. K., Goyal, S. (2017). Role of human behaviour attributes in mobile crowd sensing: a systematic literature review. Digital Policy, Regulation and Governance, 19(2):168–185.CrossRefGoogle Scholar
  3. Ajzen, I. (1991). The theory of planned behaviour. Organizational Behaviour & Human Decision Processes, 50(2), 179–211.CrossRefGoogle Scholar
  4. Ajzen, I., & Fishbein, M. (1980). Understanding attitudes and predicting social behavior. Upper Saddle River, NJ: Prentice Hall.Google Scholar
  5. Akar, E., & Topçu, B. (2011). An examination of the factors influencing consumers’ attitudes toward social media marketing. Journal of Internet Commerce, 10(1), 35–67.CrossRefGoogle Scholar
  6. Ali, H. (2011). Exchanging value within individuals’ networks: Social support implications for health marketers. Journal of Marketing Management, 27(3/4), 316–335.CrossRefGoogle Scholar
  7. Ali, M., & Lee, H. (2010, April 12–13). Culture or social interaction? A study of influential factors on weblog design. Paper presented at the European and Mediterranean Conference on Information Systems, Abu Dhabi. Retrieved April 7, 2016, from
  8. Al-Jabri, I. M., Sohail, M. S., & Ndubisi, N. O. (2015). Understanding the usage of global social networking sites by Arabs through the lens of uses and gratifications theory. Journal of Service Management, 26(4), 662–680.CrossRefGoogle Scholar
  9. Al-Gahtani, S. S., Hubona, G. S., Wang, J. (2007). Information technology (IT) in Saudi Arabia: Culture and the acceptance and use of IT. Information & Management, 44(8):681–691.CrossRefGoogle Scholar
  10. Alwi, S. F. S., & Kitchen, P. J. (2014). Projecting corporate brand image and behavioral response in business schools: Cognitive or affective brand attributes? Journal of Business Research, 67(11), 2324–2336.CrossRefGoogle Scholar
  11. Amichai-Hamburger, Y., Wainapel, G., & Fox, S. (2002). On the internet no one knows I’m an introvert: Extroversion, neuroticism, and internet interaction. CyberPsychology & Behaviour, 5, 125–128.CrossRefGoogle Scholar
  12. Armitage, C. J., & Conner, M. (2000). Attitudinal ambivalence: A test of three key hypotheses. Personality and Social Psychology Bulletin, 26(11), 1421–1433.CrossRefGoogle Scholar
  13. Bala, H., & Venkatesh, V. (2016). Adaptation to information technology: A holistic nomological network from implementation to job outcomes. Management Science, 62(1), 156–179.Google Scholar
  14. Beaudry, A., & Pinsonneault, A. (2005). Understanding user responses to information technology: A coping model of user adaptation. MIS Quarterly, 29(3), 493–525.CrossRefGoogle Scholar
  15. Bharati, P., Zhang, C., & Chaudhury, A. (2014). Social media assimilation in firms: Investigating the roles of absorptive capacity and institutional pressures. Information Systems Frontiers, 16(2), 257–272.CrossRefGoogle Scholar
  16. Bhattacherjee, A. (2001). Understanding information systems continuance: An expectation-confirmation model. Management Information Systems Quarterly, 25(3), 351–370.CrossRefGoogle Scholar
  17. Blanchard, A., & Markus, M. (2004). The experience ‘sense’ of a virtual community: Characteristics and process. Database for Advances in Information Systems, 35, 65–79.CrossRefGoogle Scholar
  18. Boudreau, M. C., & Robey, D. (2005). Enacting integrated information technology: A human agency perspective. Organisation Science, 16(1), 3–18.CrossRefGoogle Scholar
  19. Boyd, D. (2008). Facebook’s privacy trainwreck: Exposure, invasion, and social convergence. Convergence, 14(1), 13–20.CrossRefGoogle Scholar
  20. Boyd, D. M., & Ellison, N. B. (2007). Social network sites: Definition, history, and scholarship. Journal of Computer-Mediated Communication, 13(1), 210–230.CrossRefGoogle Scholar
  21. Breckler, S. J. (1984). Empirical validation of affect, behavior, and cognition as distinct components of attitude. Journal of Personality and Social Psychology, 47, 1191–1205.CrossRefGoogle Scholar
  22. Carroll, J., Howard, S., Peck, J., & Murphy, J. (2003). From adoption to use the process of appropriating a mobile phone. Australian Journal of Information Systems, 10(2), 38–48.Google Scholar
  23. Champoux, J. E. (1996). Organizational behavior: Integrating individuals, groups, and process. St. Paul: West Publishing Company.Google Scholar
  24. Chang, H. H., & Chuang, S. S. (2011). Social capital and individual motivations on knowledge sharing: Participant involvement as a moderator. Information & Management, 48(1), 9–18.CrossRefGoogle Scholar
  25. Charlesworth, A. (2014). An introduction to social media marketing. Oxon: Routledge.CrossRefGoogle Scholar
  26. Cheek, J. M., & Buss, A. H. (1981). Shyness and sociability. Journal of Personality and Social Psychology, 41(2), 330–339.CrossRefGoogle Scholar
  27. Chen, J. V., Yen, D. C., & Chen, K. (2009). The acceptance and diffusion of the innovative smartphone use: A case study of a delivery service company in logistics. Information & Management, 46(4), 241–248.CrossRefGoogle Scholar
  28. Cheung, C. M., & Lee, M. K. (2006). Understanding consumer trust in Internet shopping: A multidisciplinary approach. Journal of the American Society for Information Science and Technology, 57(4), 479–492.CrossRefGoogle Scholar
  29. Cheung, C., Lee, Z. W., & Chan, T. K. (2015). Self-disclosure in social networking sites: The role of perceived cost, perceived benefits and social influence. Internet Research, 25(2), 279–299.CrossRefGoogle Scholar
  30. Chew, M., Balfanz, D., & Laurie, B. (2008). (Under) mining privacy in social networks. Paper presented at Web 2.0 Security and Privacy 2008, Oakland, CA.Google Scholar
  31. Chhonker, M. S., Verma, D., Kar, A. K. (2017). Review of Technology Adoption frameworks in Mobile Commerce. Procedia Computer Science, 122:888–895.CrossRefGoogle Scholar
  32. Chiang, H. S. (2013). Continuous usage of social networking sites: The effect of innovation and gratification attributes. Online Information Review, 37(6), 851–871.CrossRefGoogle Scholar
  33. Chiasson, M. W., & Lovato, C. Y. (2001). Factors influencing the formation of a user’s perception and use of a DSS software innovation. Database for Advances in Information Systems, 32(3), 16–35.CrossRefGoogle Scholar
  34. Chiu, H.-C. (2002). A study on the cognitive and affective components of service quality. Total Quality Management, 13(2), 265–274.CrossRefGoogle Scholar
  35. Chiu, C.-M., Hsu, M.-H., & Wang, E. T. G. (2006). Understanding knowledge sharing in virtual communities: An integration of social capital and social cognitive theories. Decision Support Systems, 42, 1872–1888.CrossRefGoogle Scholar
  36. Chow, W. S., & Chan, L. S. (2008). Social network, social trust and shared goals in organizational knowledge sharing. Information and Management, 45, 458–465.CrossRefGoogle Scholar
  37. Cobb, S. (1976). Social support as a moderator of life stress. Psychosomatic Medicine, 38(5), 300–314.CrossRefGoogle Scholar
  38. Cohen, D., & Prusak, L. (2001). In good company: How social capital makes organizations work. Boston: Harvard Business School Press.Google Scholar
  39. Compeau, D. R., & Higgins, C. A. (1995). Computer self-efficacy: Development of a measure and initial test. MIS Quarterly, 19(2), 189–211.CrossRefGoogle Scholar
  40. Crocker, J., & Canevello, A. (2008). Creating and undermining social support in communal relationships: The role of compassionate and self-image goals. Journal of Personality and Social Psychology, 95(3), 555–575.CrossRefGoogle Scholar
  41. Csikszentmihalyi, M. (1977). Beyond boredom and anxiety. San Francisco, CA: Jossey-Bass.Google Scholar
  42. Culnan, M. J. (2000). Protecting privacy online: Is self-regulation working? Journal of Public Policy & Marketing, 19(1), 20–26.CrossRefGoogle Scholar
  43. Cyr, D., Bonanni, C., Bowes, J., & Ilsever, J. (2005). Beyond trust: Web site design preferences across cultures. Journal of Global Information Management, 13(4), 25–54.CrossRefGoogle Scholar
  44. Da Silva, R. V., & Syed Alwi, S. F. (2008). Online brand attributes and offline corporate brand images: Do they differ? Corporate Reputation Review, 10(4), 217–244.Google Scholar
  45. Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319–339.CrossRefGoogle Scholar
  46. Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology: A comparison of two theoretical models. Management Science, 35(8), 982–1002.CrossRefGoogle Scholar
  47. Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1992). Extrinsic and intrinsic motivation to use computers in the workplace. Journal of Applied Social Psychology, 22(14), 1111–1132.CrossRefGoogle Scholar
  48. De Valck, K., van Bruggen, G. H., & Wierenga, B. (2009). Virtual communities: A marketing perspective. Decision Support Systems, 47(3), 185–203.CrossRefGoogle Scholar
  49. Dey, B. L., Binsardi, B., Prendergast, R., & Saren, M. (2013). A qualitative enquiry into the appropriation of mobile telephony at the bottom of the pyramid. International Marketing Review, 30(4), 297–322.CrossRefGoogle Scholar
  50. Dholakia, U. M., Bagozzi, R. P., & Pearo, L. K. (2004). A social influence model of consumer participation in network- and small-group-based virtual communities. International Journal of Research in Marketing, 21, 241–263.CrossRefGoogle Scholar
  51. Diffley, S., Kearns, J., Bennett, W., & Kawalek, P. (2011). Consumer behaviour in social networking sites: Implications for marketers. Irish Journal of Management, 30, 47–66. Retrieved from Scholar
  52. Dishaw, M. T., & Strong, D. M. (1999). Extending the technology acceptance model with task technology fit constructs. Information and Management, 36(1), 9–21.CrossRefGoogle Scholar
  53. Domina, T., Lee, S.-E., & MacGillivray, M. (2012). Understanding factors affecting consumer intention to shop in a virtual world. Journal of Retailing and Consumer Services, 19(6), 613–620.CrossRefGoogle Scholar
  54. Dutton, J. E., & Jackson, S. E. (1987). Categorizing strategic issues: Links to organizational actions. Academy of Management Review, 12(1), 76–90.CrossRefGoogle Scholar
  55. Dwivedi, Y. K., Rana, N. P., Jeyaraj, A., Clement, M., & Williams, M. D. (2017a). Re-examining the unified theory of acceptance and use of technology (UTAUT): Towards a revised theoretical model. Information Systems Frontiers, 1–16. Scholar
  56. Dwivedi, Y. K., Rana, N. P., Janssen, M., Lal, B., Williams, M. D., & Clement, R. M. (2017b). An empirical validation of a unified model of electronic government adoption (UMEGA). Government Information Quarterly, 34(2), 211–230.CrossRefGoogle Scholar
  57. Dyson, E. (1998). A design for living in the digital age. New York: Broadway Books.Google Scholar
  58. Dwork, C., and Mulligan, D. K. (2013). It’s not privacy, and it’s not fair. Stan. L. Rev. Online, 66, 35.Google Scholar
  59. Eagly, A. H., & Chaiken, S. (1993). The psychology of attitudes. Fort Worth, TX: Harcourt Brace Jovanovich College Publishers.Google Scholar
  60. Eastlick, M. A., Lotz, S. L., & Warrington, P. (2006). Understanding online B-to-C relationships: An integrated model of privacy concerns, trust, and commitment. Journal of Business Research, 59(8), 877–886.CrossRefGoogle Scholar
  61. Edwards, K. (1990). The interplay of affect and cognition in attitude formation and change. Journal of Personality and Social Psychology, 59, 202–216.CrossRefGoogle Scholar
  62. Ellison, N. B., Steinfield, C., & Lampe, C. (2007). The benefits of Facebook “friends:” Social capital and college students’ use of online social network sites. Journal of Computer-Mediated Communication, 12(4), 143–1168.CrossRefGoogle Scholar
  63. Fazio, R. H. (1986). How do attitudes guide behavior. In R. M. Sorrentino & E. T. Higgins (Eds.), Handbook of motivation and cognition: Foundations of social behavior (Vol. 1, pp. 204–243). New York: Guilford Press.Google Scholar
  64. Featherman, M. S., & Pavlou, P. A. (2003). Predicting e-services adoption: A perceived risk facets perspective. International Journal of Human-Computer Studies, 59(4), 451–474.CrossRefGoogle Scholar
  65. Fishbein, M., & Ajzen, I. (1975). Belief, attitude, intention and behaviour: An introduction to theory and research. Reading, MA: Addison-Wesley Publishing Company.Google Scholar
  66. Folkman, S. (1992). Making the case for coping. In B. N. Carpenter (Ed.), Personal coping: Theory, research, and application (pp. 31–46). Westport, CT: Praeger.Google Scholar
  67. Folkman, S., & Moskowitz, J. T. (2000). Positive affect and the other side of coping. American Psychologist, 55(6), 647–654.CrossRefGoogle Scholar
  68. Folkman, S., Lazarus, R. S., Gruen, R. J., & DeLongis, A. (1986). Appraisal, coping, health status and psychological symptoms. Journal of Personality and Social Psychology, 50(3), 571–579.CrossRefGoogle Scholar
  69. Ford, G. T., & Smith, R. A. (1987). Inferential beliefs in consumer evaluations: An assessment of alternative processing strategies. Journal of Consumer Research, 14(3), 363–371.CrossRefGoogle Scholar
  70. Franke, N., & Shah, S. (2003). How communities support innovative activities: An exploration of assistance and sharing among end-users. Research Policy, 32, 157–178.CrossRefGoogle Scholar
  71. Franzen, G., & Bouwman, M. (2001). The mental world of brands. Oxfordshire, UK: World Advertising Research (WARC).Google Scholar
  72. Fugate, M., Kinicki, A. J., & Prussia, G. E. (2008). Employee coping with organizational change: An examination of alternative theoretical perspectives and models. Personnel Psychology, 61(1), 1–36.CrossRefGoogle Scholar
  73. Füller, J., Jawecki, G., & Mühlbacher, H. (2007). Innovation creation by online basketball communities. Journal of Business Research, 60, 60–71.CrossRefGoogle Scholar
  74. Fish, T. (2009). My Digital Footprint A two-sided digital business model where your privacy will be someone else’s business!. Futuretext.Google Scholar
  75. Gamboa, A. M., & Gonçalves, H. M. (2014). Customer loyalty through social networks: Lessons from Zara on Facebook. Business Horizons, 57(6), 709–717.CrossRefGoogle Scholar
  76. Garcia, R., & Calantone, R. (2002). A critical look at technological innovation typology and innovativeness terminology. Journal of Product Innovation Management, 19(2), 110–132.CrossRefGoogle Scholar
  77. Gefen, D., Rao, V. S., & Tractinsky, N. (2003, January 6–9). The conceptualization of trust, risk, and their relationships in e-commerce. Proceeding of 36th Hawaii International Conference on System Sciences, Big Island, HI.Google Scholar
  78. Ghosh, A., Varshney, S., & Venugopal, P. (2014). Social media WOM: Definition, consequences and inter-relationships. Management and Labour Studies, 39(3), 293–308.CrossRefGoogle Scholar
  79. Gironda, J. T., & Korgaonkar, P. K. (2014). Understanding consumers’ social networking site usage. Journal of Marketing Management, 30(5–6), 571–605.CrossRefGoogle Scholar
  80. Grace, D., Ross, M., & Shao, W. (2015). Examining the relationship between social media characteristics and psychological dispositions. European Journal of Marketing, 49(9/10), 1366–1390.CrossRefGoogle Scholar
  81. Grieve, R., Indian, M., Witteveen, K., Anne Tolan, G., & Marrington, J. (2013). Face-to-face or Facebook: Can social connectedness be derived online? Computers in Human Behaviour, 29(3), 604–609.CrossRefGoogle Scholar
  82. Gross, R., & Acquisti, A. (2005). Information revelation and privacy in online social networks. In Proceedings of the 2005 ACM Workshop on Privacy in the Electronic Society, Alexandria (pp. 71–80).Google Scholar
  83. Gupta, S., & Pirsch, J. (2006). The company–cause–customer fit decision in cause-related marketing. Journal of Consumer Marketing, 23(6), 314–326.CrossRefGoogle Scholar
  84. Ha, S., & Stoel, L. (2009). Consumer e-shopping acceptance: Antecedents in a technology acceptance model. Journal of Business Research, 62(5), 565–571.CrossRefGoogle Scholar
  85. Hadjikhani, A., Lee, J. W., & Ghauri, P. N. (2008). Network view of MNCs’ socio-political behavior. Journal of Business Research, 61(9), 912–924.CrossRefGoogle Scholar
  86. Hajli, M. N. (2014). A study of the impact of social media on consumers. International Journal of Market Research, 56(3), 388–404.CrossRefGoogle Scholar
  87. Hau, Y. S., & Kim, Y. G. (2010). Why would online gamers share their innovation-conducive knowledge in the online game user community? Integrating individual motivations and social capital perspectives. Computers in Human Behavior, 27(2), 956–970.CrossRefGoogle Scholar
  88. Hennig-Thurau, T., Gwinner, K. P., Walsh, G., & Gremler, D. D. (2004). Electronic word-of-mouth via consumer-opinion platforms: What motivates consumers to articulate themselves on the Internet? Journal of Interactive Marketing, 18(1), 38–52.CrossRefGoogle Scholar
  89. Hepper, E. G., Hart, C. M., Gregg, A. P., & Sedikides, C. (2011). Motivated expectations of positive feedback in social interactions. Journal of Social Psychology, 151(4), 455–477.CrossRefGoogle Scholar
  90. Hoffman, D. L., Novak, T. P., & Peralta, M. (1999). Building consumer trust online. Communications of the ACM, 42(4), 80–85.CrossRefGoogle Scholar
  91. Hsu, C., & Wu, C. (2011). Understanding users’ continuance of Facebook: An integrated model with the unified theory of acceptance and use of technology, expectation disconfirmation model, and flow theory. International Journal of Virtual Communities and Social Networking, 3(2), 1–16.CrossRefGoogle Scholar
  92. Hsu, C. L., Lu, H. P., & Hsu, H. H. (2007). Adoption of the mobile internet: An empirical study of multimedia message service (MMS). Omega, 35(5), 715–726.CrossRefGoogle Scholar
  93. Huang, E. (2012). Online experiences and virtual goods purchase intention. Internet Research, 22(3), 252–274.CrossRefGoogle Scholar
  94. Hussain, I. (2012). A study to evaluate the social media trends among university students. Procedia – Social and Behavioral Sciences, 64, 639–645.CrossRefGoogle Scholar
  95. Im, I., Kim, Y., & Han, H. J. (2008). The effects of perceived risk and technology type on users’ acceptance of technologies. Information & Management, 45(1), 1–9.CrossRefGoogle Scholar
  96. Jackson, S. A., & Marsh, H. W. (1996). Development and validation of a scale to measure optimal experience: The flow state scale. Journal of Sport & Exercise Psychology, 18(1), 17–35.CrossRefGoogle Scholar
  97. Jan, A. U., & Contreras, V. (2011). Technology acceptance model for the use of information technology in universities. Computers in Human Behavior, 27(8), 845–851.CrossRefGoogle Scholar
  98. Jeppesen, L. B., & Molin, M. J. (2003). Consumer as co-developers: Learning and innovation outside the firm. Technology Analysis and Strategic Management, 15, 363–384.CrossRefGoogle Scholar
  99. Kabadayi, S., & Gupta, R. (2005). Website loyalty: An empirical investigation of its antecedents. International Journal of Internet Marketing and Advertising, 2(4), 321–345.CrossRefGoogle Scholar
  100. Karahanna, E., Straub, D. W., & Chervany, N. L. (1999). Information technology adoption across time: A cross-sectional comparison of pre-adoption and post-adoption belief. MIS Quarterly, 23(2), 183–213.CrossRefGoogle Scholar
  101. Karyda, M., Gritzalis, S., Hyuk Park, J., & Kokolakis, S. (2009). Privacy and fair information practices in ubiquitous environments: Research challenges and future directions. Internet Research, 19(2), 194–208.CrossRefGoogle Scholar
  102. Kessler, T. A. (1998). The cognitive appraisal of health scale: Development and psychometric evaluation. Research in Nursing & Health, 21, 73–82.CrossRefGoogle Scholar
  103. Kim, J., & Lee, R. J.-E. (2011). The Facebook paths to happiness: Effects of the number of Facebook friends and self-presentation on subjective well-being. Cyberpsychology, Behavior, and Social Networking, 14(6), 359–364.CrossRefGoogle Scholar
  104. Kim, H. W., Gupta, S., & Koh, J. (2011). Investigating the intention to purchase digital items in social networking communities: A customer value perspective. Information & Management, 48(6), 228–234.CrossRefGoogle Scholar
  105. Kitchen, P., & Panopoulos, A. (2010). Online PR: The adoption process and innovation challenge, a Greek example. Public Relations Review, 36(4), 222–229.CrossRefGoogle Scholar
  106. Ko, H., Cho, C. H., & Roberts, M. S. (2005). Internet uses and gratifications: A structural equation model of interactive advertising. Journal of Advertising, 34(2), 57–70.CrossRefGoogle Scholar
  107. Korgaonkar, P. K., & Wolin, L. D. (1999). A multivariate analysis of web uses. Journal of Advertising Research, 39(1), 53–68.Google Scholar
  108. Koufaris, M. (2002). Applying the technology acceptance model and flow theory to online consumer behavior. Information Systems Research, 13(2), 205–223.CrossRefGoogle Scholar
  109. Krasnova, H., Spiekermann, S., Koroleva, K., & Hildebrand, T. (2010). Online social networks: Why we disclose. Journal of Information Technology, 25(2), 109–125.CrossRefGoogle Scholar
  110. Kwon, J., & Vogt, C. A. (2010). Identifying the role of cognitive, affective, and behavioral components in understanding residents’ attitudes toward place marketing. Journal of Travel Research, 49, 423–434.CrossRefGoogle Scholar
  111. Lanier, C. D., Jr., & Saini, A. (2008). Understanding consumer privacy: A review and future directions. Academy of Marketing Science Review, 12(2), 1.Google Scholar
  112. Lapointe, L., & Rivard, S. (2005). A multilevel model of resistance to information technology implementation. MIS Quarterly, 29(3), 461–491.CrossRefGoogle Scholar
  113. Laurenceau, J., Barrett, L. F., & Pietromonaco, P. R. (1998). Intimacy as an interpersonal process: The importance of self-disclosure, partner disclosure, and perceived partner responsiveness in interpersonal exchanges. Journal of Personality and Social Psychology, 74(5), 1238–1251.CrossRefGoogle Scholar
  114. Lazarus, R. S. (1982). Thoughts on the relation between emotion and cognition. American Psychology, 37(9), 1019–1024.CrossRefGoogle Scholar
  115. Lazarus, R. S., & Folkman, S. (1984). Stress, appraisal, and coping. New York: Springer Publishing Company.Google Scholar
  116. Lean, O. K., Zailani, S., Ramayah, T., & Fernando, Y. (2009). Factors influencing intention to use e-government services among citizens in Malaysia. International Journal of Information Management, 29(6), 458–475.CrossRefGoogle Scholar
  117. Lee, D., Park, J. Y., Kim, J., & Moon, J. (2011). Understanding music sharing behaviour on social network services. Online Information Review, 35(5), 716–733.CrossRefGoogle Scholar
  118. Lee, H., Park, H., & Kim, J. (2013). Why do people share their context information on Social Network Services? A qualitative study and an experimental study on users’ behavior of balancing perceived benefit and risk. International Journal of Human-Computer Studies, 71(9), 862–877.CrossRefGoogle Scholar
  119. Lerner, J., & Tirole, J. (2002). Some simple economics of open source. Journal of Industrial Economics, 50, 197–234.CrossRefGoogle Scholar
  120. Li, D., Browne, G. J., & Wetherbe, J. C. (2006). Why do internet users stick with a specific web site? A relationship perspective. International Journal of Electronic Commerce, 10(4), 105–141.CrossRefGoogle Scholar
  121. Liang, H., & Xue, Y. (2009). Avoidance of information technology threats: A theoretical perspective. MIS Quarterly, 33(1), 71–90.CrossRefGoogle Scholar
  122. Liang, T.-P., Ho, Y.-T., Li, Y.-W., & ScTurban, E. (2011). What drives social commerce: The role of social support and relationship quality. International Journal of Electronic Commerce, 16(2), 69–90.CrossRefGoogle Scholar
  123. Lin, H. F. (2011). An empirical investigation of mobile banking adoption: The effect of innovation attributes and knowledge-based trust. International Journal of Information Management, 31(3), 252–260.CrossRefGoogle Scholar
  124. Lin, C. P., & Anol, B. (2008). Learning online social support: An investigation of network information technology based on UTAUT. Cyberpsychology & Behavior, 11(3), 268–272.CrossRefGoogle Scholar
  125. Lin, C., Gregor, S., & Ewing, M. (2008). Developing a scale to measure the enjoyment of web experiences. Journal of Interactive Marketing, 22(4), 40–57.CrossRefGoogle Scholar
  126. Louis, M. R., & Sutton, R. I. (1991). Switching cognitive gears: From habits of mind to active thinking. Human Relations, 44, 55–76.CrossRefGoogle Scholar
  127. Lu, J., Yao, J. E., & Yu, C. S. (2005). Personal innovativeness, social influences and adoption of wireless Internet services via mobile technology. The Journal of Strategic Information Systems, 14(3), 245–268.CrossRefGoogle Scholar
  128. Lu, J., Yu, C. S., & Liu, C. (2009a). Mobile data service demographics in urban China. Journal of Computer Information Systems, 50(2), 117–126.Google Scholar
  129. Lu, Y., Zhou, T., & Wang, B. (2009b). Exploring Chinese users’ acceptance of instant messaging using the theory of planned behavior, the technology acceptance model, and the flow theory. Computers in Human Behavior, 25(1), 29–39.CrossRefGoogle Scholar
  130. Lwin, M. O., Williams, J. D., & Lan, L. L. (2002). Social marketing initiative: National Kidney Foundations’ Organ Donation Programs in Singapore. Journal of Public Policy and Marketing, 21(1), 66–77.CrossRefGoogle Scholar
  131. Lyytinen, K., & Rose, G. M. (2003). The disruptive nature of information technology innovations: The case of internet computing in systems development organizations. MIS Quarterly, 27(4), 557–596.CrossRefGoogle Scholar
  132. Majchrzak, A., Rice, R. E., Malhotra, A., King, N., & Ba, S. (2000). Technology adaptation: The case of a computer-supported inter-organizational virtual team. MIS Quarterly, 24(4), 569–600.CrossRefGoogle Scholar
  133. Major, B., Richards, M. C., Cooper, M. L., Cozzarelli, C., & Zubek, J. (1998). Personal resilience, cognitive appraisals, and coping: An integrative model of adjustment to abortion. Journal of Personality and Social Psychology, 74(3), 735–752.CrossRefGoogle Scholar
  134. Maslow, A. H. (1954). Motivation and personality. New York: Harper and Brothers.Google Scholar
  135. McKnight, D. H., Choudhury, V., & Kacmar, C. (2002). Developing and validating trust measures for e-commerce: An integrative typology. Information Systems Research, 13(3), 334–359.CrossRefGoogle Scholar
  136. Metzger, M. J. (2004). Privacy, trust, and disclosure: Exploring barriers to electronic commerce. Journal of Computer-Mediated Communication, 9(4). Scholar
  137. Moon, J. W., & Kim, Y. G. (2001). Extending the TAM for World-Wide-Web context. Information & Management, 38(4), 217–230.CrossRefGoogle Scholar
  138. Moore, G. C., & Benbasat, I. (1991). Development of an instrument to ensure the perceptions of adopting an information technology innovation. Information Systems Research, 2(3), 192–222.CrossRefGoogle Scholar
  139. Moorman, C., Deshpande, R., & Zaltman, G. (1993). Factors affecting trust in market research relationships. The Journal of Marketing, 57, 81–101.CrossRefGoogle Scholar
  140. Morgan, R. M., & Hunt, S. D. (1994). The commitment-trust theory of relationship marketing. The Journal of Marketing, 58, 20–38.CrossRefGoogle Scholar
  141. Morris, M. G., & Venkatesh, V. (2010). Job characteristics and job satisfaction: Understanding the role of enterprise resource planning system implementation. MIS Quarterly, 34(1), 143–161.CrossRefGoogle Scholar
  142. Muhammad, S. S., Dey, B. L., & Weerakkody, V. (2018). Analysis of factors that influence customers’ willingness to leave big data digital footprints on social media: A systematic review of literature. Information Systems Frontiers, 20(3), 559–576.CrossRefGoogle Scholar
  143. Nan, N. (2011). Capturing bottom-up information technology use processes: A complex adaptive systems model. MIS Quarterly, 35(2), 505–532.CrossRefGoogle Scholar
  144. Nie, N. H. (2001). Sociability, interpersonal relations, and the internet: Reconciling conflicting findings. The American Behavioral Scientist, 45(3), 420–435.CrossRefGoogle Scholar
  145. Nov, O., Naaman, M., & Ye, C. (2010). Analysis of participation in an online photo sharing community: A multidimensional perspective. Journal of American Society for Information Science and Technology, 61(3), 555–566.Google Scholar
  146. Novak, T. P., Hoffman, D. L., & Yung, Y. F. (2000). Measuring the customer experience in online environments: A structural modeling approach. Marketing Science, 19(1), 22–42.CrossRefGoogle Scholar
  147. Obst, P., & Stafurik, J. (2010). Online we are all able bodied: Online psychological sense of community and social support found through membership of disability-specific Websites promotes well-being for people living with a physical disability. Journal of Community & Applied Social Psychology, 20(6), 525–531.CrossRefGoogle Scholar
  148. Oldmeadow, J. A., Quinn, S., & Kowert, R. (2013). Attachment style, social skills, and Facebook use amongst adults. Computers in Human Behaviour, 29(3), 1142–1149.CrossRefGoogle Scholar
  149. Palmgreen, P., & Rayburn, J. (1979). Uses and gratifications and exposure to public television. Communication Research, 6(2), 155–180.CrossRefGoogle Scholar
  150. Papacharissi, Z. (2009). The virtual geographies of social networks: A comparative analysis of Facebook, LinkedIn and ASmallWorld. New Media and Society, 11(1–2), 199–220.CrossRefGoogle Scholar
  151. Papacharissi, Z., & Rubin, A. M. (2000). Predictors of internet use. Journal of Broadcasting & Electronic Media, 44(2), 175–196.CrossRefGoogle Scholar
  152. Papies, D., & Clement, M. (2008). Adoption of new movie distribution services on the internet. Journal of Media Economics, 21(3), 131–157.CrossRefGoogle Scholar
  153. Park, H., & Kim, Y.-K. (2014). The role of social network websites in the consumer–brand relationship. Journal of Retailing and Consumer Services, 21(4), 460–467.CrossRefGoogle Scholar
  154. Park, N., Kee, K., & Valenzuela, S. (2009). Being immersed in social networking environment: Facebook groups, uses and gratifications, and social outcomes. Cyberpsychology & Behavior, 12(6), 729–733.CrossRefGoogle Scholar
  155. Patrickson, M. (1986). Adaptation by employees to new technology. Journal of Occupational Psychology, 59, 1–11.CrossRefGoogle Scholar
  156. Pavlou, P. A., Liang, H., & Xue, Y. (2007). Understanding and mitigating uncertainty in online exchange relationships: A principal-agent perspective. MIS Quarterly, 31(1), 105–136.CrossRefGoogle Scholar
  157. Pentina, I., Zhang, L., & Basmanova, O. (2013). Antecedents and consequences of trust in a social media brand: A cross-cultural study of Twitter. Computers in Human Behavior, 29(4), 1546–1555.CrossRefGoogle Scholar
  158. Phelps, J., Nowak, G., & Ferrell, E. (2000). Privacy concerns and consumer willingness to provide personal information. Journal of Public Policy & Marketing, 19(1), 27–41.CrossRefGoogle Scholar
  159. Pike, S., & Ryan, C. (2004). Destination positioning analysis through a comparison of cognitive, affective, and conative perception. Journal of Travel Research, 42(May), 333–342.CrossRefGoogle Scholar
  160. Plouffe, C. R., Hulland, J. S., & Vandenbosch, M. (2001). Research report: Richness versus parsimony in modeling technology adoption decisions-understanding merchant adoption of a smart card-based payment system. Information Systems Research, 12(2), 208–222.CrossRefGoogle Scholar
  161. Porter, L. W., Bigley Bigley, G. A., & Steers, R. M. (2003). Motivation and work behavior (7th ed.). New York: McGraw-Hill.Google Scholar
  162. Rana, N. P., Dwivedi, Y. K., Williams, M. D., & Weerakkody, V. (2016). Adoption of online public grievance redressal system in India: Toward developing a unified view. Computers in Human Behavior, 59, 265–282.CrossRefGoogle Scholar
  163. Rana, N. P., Dwivedi, Y. K., Lal, B., Williams, M. D., & Clement, M. (2017). Citizens’ adoption of an electronic government system: Towards a unified view. Information Systems Frontiers, 19(3), 549–568.CrossRefGoogle Scholar
  164. Rettie, R. (2001). An exploration of flow during Internet use. Internet Research, 11(2), 103–113.CrossRefGoogle Scholar
  165. Ridings, C., Gefen, D., & Arinze, B. (2002). Some antecedents and effects of trust in virtual communities. Journal of Strategic Information Systems, 11, 271–295.CrossRefGoogle Scholar
  166. Rogers, E. M. (2003). Diffusion of innovations. New York: The Free Press.Google Scholar
  167. Rosen, C. (2007). Virtual friendship and the new narcissism. The New Atlantis, 17(2), 3–15.Google Scholar
  168. Rosenberg, M. J., & Hovland, C. I. (1960). Cognitive, affective, and behavioral components of attitudes. In C. I. Hovland & M. J. Rosenberg (Eds.), Attitude organization and change: An analysis of consistency among attitude components (pp. 1–14). New Haven, CT: Yale University Press.Google Scholar
  169. Rosenblum, D. (2007). What anyone can know: The privacy risks of social networking sites. IEEE Security & Privacy, 5(3), 40–49.CrossRefGoogle Scholar
  170. Sas, C., Dix, J. A., Hart, J., & Su, R. (2009). Dramaturgical capitalization of positive emotions: The answer for Facebook success? Proceedings of the 23rd British HCI Group Annual Conference on People and Computers: Celebrating People and Technology, ACM Digital Library (pp. 120–129).Google Scholar
  171. Sedikides, C., & Gregg, A. P. (2008). Self-enhancement: Food for thought. Perspectives on Psychological Science, 3(2), 102–116.CrossRefGoogle Scholar
  172. Sharma, S. K. (2017). Integrating cognitive antecedents into TAM to explain mobile banking behavioral intention: A SEM-neural network modeling. Information Systems Frontiers, 2017, 1–13.Google Scholar
  173. Shaw, L. H., & Gant, L. M. (2002). In defense of the Internet: The relationship between Internet communication and depression, loneliness, self-esteem, and perceived social support. Cyberpsychology & Behavior, 5(2), 157–171.CrossRefGoogle Scholar
  174. Shumaker, S. A., & Brownell, A. (1984). Toward a theory of social support: Closing conceptual gaps. Journal of Social Issues, 40, 11–36.CrossRefGoogle Scholar
  175. Sledgianowski, D., & Kulviwat, S. (2009). Using social networks sites: The effects of playfulness, critical mass and trust in a hedonic context. Journal of Computer Information Systems, 49, 74–83.Google Scholar
  176. Szmigin, I. (2018). Consumer behaviour. Oxford: Oxford University Press.Google Scholar
  177. Talukder, M., & Quazi, A. (2011). The impact of social influence on individuals’ adoption of innovation. Journal of Organizational Computing and Electronic Commerce, 21(2), 111–135.CrossRefGoogle Scholar
  178. Taylor, S. E., Sherman, D. K., Kim, H. S., Jarcho, J., Takagi, K., & Dunagan, M. S. (2004). Culture and social support: Who seeks it and why? Journal of Personality and Social Psychology, 87(3), 354–362.CrossRefGoogle Scholar
  179. Terry, M., Sweeny, K., & Shepperd, J. (2007). Self-presentation. In R. R. Baumeister & K. Vohs (Eds.), Encyclopedia of social psychology (pp. 836–839). Thousand Oaks, CA: SAGE Publications.Google Scholar
  180. Thatcher, J., McKnight, H., Arsal, R., Baker, E., & Roberts, N. (2011). The role of trust in post-adoption IT exploration: An empirical examination of knowledge management systems. IEEE Transactions on Engineering Management, 58(1), 56–70.CrossRefGoogle Scholar
  181. Thompson, R. L., Higgins, C. A., & Howell, J. M. (1991). Personal computing: Toward a conceptual model of utilization. MIS Quarterly, 15(1), 124–143.CrossRefGoogle Scholar
  182. Thurstone, L. L., & Chave, E. J. (1929). The measurement of attitude. Chicago: University of Chicago Press.Google Scholar
  183. Trivedi, N., Asamoah, D. A., & Doran, D. (2016). Keep the conversations going: engagement-based customer segmentation on online social service platforms. Information Systems Frontiers, 20, 239–257.CrossRefGoogle Scholar
  184. Tucker, C. E. (2014). Social networks, personalized advertising, and privacy controls. Journal of Marketing Research, 51(5), 546–562.CrossRefGoogle Scholar
  185. Van der Heijden, H. (2004). User acceptance of hedonic information systems. MIS Quarterly, 28(4), 695–704.CrossRefGoogle Scholar
  186. Venkatesh, V., & Morris, M. G. (2000). Why don’t men ever stop to ask for directions? Gender, social influence, and their role in technology acceptance and usage behavior. Management Information Systems Quarterly, 24(1), 115–139.CrossRefGoogle Scholar
  187. Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. Management Information Systems Quarterly, 27(3), 425–478.CrossRefGoogle Scholar
  188. Venkatesh, V., Brown, S. A., Maruping, L. M., & Bala, H. (2008). Predicting different conceptualizations of system use: The competing roles of behavioral intention, facilitating conditions, and behavioral expectation. MIS Quarterly, 32(3), 483–502.CrossRefGoogle Scholar
  189. Venkatesh, V., Bala, H., & Sykes, T. A. (2010). Impacts of information and communication technology implementations on employees’ jobs in India: A multi-method longitudinal field study. Production and Operations Management, 19(5), 591–613.CrossRefGoogle Scholar
  190. Venkatesh, V., Thong, J. Y., & Xu, X. (2012). Consumer acceptance and use of information technology: Extending the unified theory of acceptance and use of technology. MIS Quarterly, 36(1), 157–178.CrossRefGoogle Scholar
  191. Venkatesh, V., Thong, J. Y., & Xu, X. (2016). Unified theory of acceptance and use of technology: A synthesis and the road ahead. Journal of the Association for Management Information Systems, 17(5), 328–376.CrossRefGoogle Scholar
  192. Vijayasarathy, L. R. (2004). Predicting consumer intentions to use on-line shopping: The case for an augmented technology acceptance model. Information and Management, 41(6), 747–762.CrossRefGoogle Scholar
  193. Vroom, V. H. (1964). Work and motivation. New York: John Wiley and Sons.Google Scholar
  194. Wang, X., Yu, C., & Wei, Y. (2012). Social media peer communication and impacts on purchase intentions: A consumer socialization framework. Journal of Interactive Marketing, 26(4), 198–208.CrossRefGoogle Scholar
  195. Warren, S. D., & Brandeis, L. D. (1890). The right to privacy. Harvard Law Review, 4, 193–220.CrossRefGoogle Scholar
  196. Warrington, T. B., Abgrab, N. J., & Caldwell, H. M. (2000). Building trust to develop competitive advantage in e-business relationships. Competitiveness Review, 10(2), 160–168.CrossRefGoogle Scholar
  197. Wei, T. T., Marthandan, G., Chong, A. Y. L., & Ooi, K. B. (2009). What drives Malaysian m-commerce adoption? An empirical analysis. Industrial Management & Data Systems, 109(3), 370–388.CrossRefGoogle Scholar
  198. Whiting, A., & Williams, D. (2013). Why people use social media: A uses and gratifications approach. Qualitative Market Research, 16(4), 362–369.CrossRefGoogle Scholar
  199. Wu, J. J., & Chang, Y. S. (2005). Towards understanding members’ interactivity, trust, and flow in online travel community. Industrial Management & Data Systems, 105(7), 937–954.CrossRefGoogle Scholar
  200. Wu, J.-J., Chen, Y.-H., & Chung, Y.-S. (2010). Trust factors influencing virtual community members: A study of transaction communities. Journal of Business Research, 63(9–10), 1025–1032.CrossRefGoogle Scholar
  201. Zajonc, R. B. (1980). Feeling and thinking: Preferences need no inferences. American Psychologist, 35(2), 151–175.CrossRefGoogle Scholar
  202. Zajonc, R. B., & Markus, H. (1982). Affective and cognitive factors in preferences. Journal of Consumer Research, 9(2), 123–131.CrossRefGoogle Scholar
  203. Zhang, H., Lu, Y., Gupta, S., & Zhao, L. (2014). What motivates customers to participate in social commerce? The impact of technological environments and virtual customer experiences. Information & Management, 51(8), 1017–1030.CrossRefGoogle Scholar
  204. Zigurs, I., & Buckland, B. K. (1998). A theory of task/technology fit and group support systems effectiveness. MIS Quarterly, 22(2), 313–334.CrossRefGoogle Scholar
  205. Zolkepli, I. A., & Kamarulzaman, Y. (2015). Social media adoption: The role of media needs and innovation characteristics. Computers in Human Behavior, 43, 189–209.CrossRefGoogle Scholar
  206. Zuboff, S. (1988). In the age of the smart machine: The future of work and power. New York: Basic Books.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Syed S. Muhammad
    • 1
    Email author
  • Bidit Dey
    • 2
  • Sharifah Alwi
    • 2
  • Mujahid Mohiuddin Babu
    • 3
  1. 1.University of Law Business SchoolLondonUK
  2. 2.Brunel UniversityLondonUK
  3. 3.Coventry UniversityCoventryUK

Personalised recommendations