Advertisement

A Review on Impact Application of Heart Rate Variability (HRV)

  • R. ShashikantEmail author
  • P. Chetankumar
Conference paper
Part of the Learning and Analytics in Intelligent Systems book series (LAIS, volume 3)

Abstract

The heart is the principal element of the physical structure because it transfers deoxygenated and oxygenated blood within the body. Heart rate variation gives the idea about many physiological and pathological parameter that lead to the change in normal to normal synchronous of the heart rate. HRV could be an essential tool within the department of cardiology, used as a non-invasive measurement technique to get the pathological information of a patient who has changed to suffer from cardiac diseases. Analysis of HRV can facilitate grasping the understanding of the autonomous nervous system (ANS) and can predict cardiac health. HRV shows the variation in the time interval between heartbeats and it is a reliable indicator of current disease, or a person may get suffer from some cardiac diseases. We gave a brief in this paper review of the clinical application of HRV and differential measurement technique such as Time domain, Frequency domain, and Non-linear technique for analysis of HRV.

Keywords

Heart rate variability (HRV) Autonomous nervous system (ANS) Heart beat Cardiac disease Time domain Frequency domain Non-linear technique 

References

  1. 1.
    ChuDuc H, NguyenPhan K, Nguyen Viet D (2013) A review of heart rate variability and its applications. APCBEE Procedia 7:80–85CrossRefGoogle Scholar
  2. 2.
    Billman GE, Huikuri HV, Sacha J, Trimmel K (2015) An introduction to heart rate variability: methodological considerations and clinical applications. Front Physiol 6:55Google Scholar
  3. 3.
    Jindal GD, Deepak KK, Jain RK (2010) A Handbook on Physiological Variability. Advanced Application of Physiological Variability (AAPV)Google Scholar
  4. 4.
    Germán-Salló Z, Germán-Salló M (2016) Non-linear methods in HRV analysis. Procedia Technol 22:645–651CrossRefGoogle Scholar
  5. 5.
    Camm AJMM, Malik M, Bigger JTGB, Breithardt G, Cerutti S, Cohen R, Coumel P, Fallen E, Kennedy H, Kleiger RE, Lombardi F (1996) Heart rate variability: standards of measurement, physiological interpretation, and clinical use. Task force of the European Society of cardiology and the north American society of pacing and electrophysiology. Circulation 93(5):1043–1065CrossRefGoogle Scholar
  6. 6.
    Gang Y, Malik M (2003) Heart rate variability analysis in general medicine. Indian Pacing Electrophysiol J 3(1):34Google Scholar
  7. 7.
    Camm AJ, Lüscher TF, Serruys PW (eds) (2009) The ESC textbook of cardiovascular medicine. Oxford University PressGoogle Scholar
  8. 8.
    Acharya UR, Joseph KP, Kannathal N, Min LC, Suri JS (2007) Heart rate variability. Advances in cardiac signal processing. Springer, Berlin, Heidelberg, pp 121–165CrossRefGoogle Scholar
  9. 9.
    Melillo P, Izzo R, Orrico A, Scala P, Attanasio M, Mirra M, De Luca N, Pecchia L (2015) Automatic prediction of cardiovascular and cerebrovascular events using heart rate variability analysis. PloS one 10(3):e0118504CrossRefGoogle Scholar
  10. 10.
    Lin CW, Wang JS, Chung PC (2010) Mining physiological conditions from heart rate variability analysis. IEEE Comput Intell Mag 5(1):50–58CrossRefGoogle Scholar
  11. 11.
    Kim KH, Bang SW, Kim SR (2004) Emotion recognition system using short-term monitoring of physiological signals. Med Biol Eng Compu 42(3):419–427CrossRefGoogle Scholar
  12. 12.
    Bravi A, Longtin A, Seely AJ (2011) Review and classification of variability analysis techniques with clinical applications. Biomed Eng Online 10(1):90CrossRefGoogle Scholar
  13. 13.
    Verlinde D, Beckers F, Ramaekers D, Aubert AE (2001) Wavelet decomposition analysis of heart rate variability in aerobic athletes. Auton Neurosci 90(1–2):138–141CrossRefGoogle Scholar
  14. 14.
    Mager DE, Merritt MM, Kasturi J, Witkin LR, Urdiqui-Macdonald M, Evans MK, Zonderman AB, Abernethy DR, Thayer JF (2004) Kullback-Leibler clustering of continuous wavelet transform measures of heart rate variability. Biomed Sci Instrum 40:337–342Google Scholar
  15. 15.
    Bračič M, Stefanovska A (1998) Wavelet-based analysis of human blood-flow dynamics. Bull Math Biol 60(5):919–935CrossRefGoogle Scholar
  16. 16.
    Panerai RB, Rennie JM, Kelsall AWR, Evans DH (1998) Frequency-domain analysis of cerebral autoregulation from spontaneous fluctuations in arterial blood pressure. Med Biol Eng Compu 36(3):315–322CrossRefGoogle Scholar
  17. 17.
    Nagy E, Orvos H, Bárdos G, Molnár P (2000) Gender-related heart rate differences in human neonates. Pediatr Res 47(6):778CrossRefGoogle Scholar
  18. 18.
    Guzzetti S, Cogliati C, Turiel M, Crema C, Lombardi F, Malliani A (1995) Sympathetic predominance followed by functional denervation in the progression of chronic heart failure. Eur Heart J 16(8):1100–1107CrossRefGoogle Scholar
  19. 19.
    Lucini D, Bertocchi F, Malliani A, Pagani M (1996) A controlled study of the autonomic changes produced by habitual cigarette smoking in healthy subjects. Cardiovasc Res 31(4):633–639CrossRefGoogle Scholar
  20. 20.
    Malpas SC, Whiteside EA, Maling TJ (1991) Heart rate variability and cardiac autonomic function in men with chronic alcohol dependence. Heart 65(2):84–88CrossRefGoogle Scholar
  21. 21.
    Togo F, Yamamoto Y (2001) Decreased fractal component of human heart rate variability during non-REM sleep. Am J Physiol Heart Circ Physiol 280(1):H17–H21CrossRefGoogle Scholar
  22. 22.
    Jang DG, Hahn M, Jang JK, Farooq U, Park SH (2012) A comparison of interpolation techniques for RR interval fitting in AR spectrum estimation. In: IEEE biomedical circuits and systems conference (BioCAS), pp. 352–355, NovemberGoogle Scholar
  23. 23.
    Wheeler T, Watkins PJ (1973) Cardiac denervation in diabetes. Br Med J 4(5892):584–586CrossRefGoogle Scholar
  24. 24.
    Folino AF, Russo G, Bauce B, Mazzotti E, Daliento L (2004) Autonomic profile and arrhythmic risk stratification after surgical repair of tetralogy of Fallot. Am Heart J 148(6):985–989CrossRefGoogle Scholar
  25. 25.
    Mahesh V, Kandaswamy A, Vimal C, Sathish B (2009) ECG arrhythmia classification based on the logistic model tree. J Biomed Sci Eng 2(6):405CrossRefGoogle Scholar
  26. 26.
    DeGiorgio CM, Miller P, Meymandi S, Chin A, Epps J, Gordon S, Gornbein J, Harper RM (2010) RMSSD, a measure of vagus-mediated heart rate variability, is associated with risk factors for SUDEP: the SUDEP-7 Inventory. Epilepsy Behav 19(1):78–81CrossRefGoogle Scholar
  27. 27.
    Lehrer P, Karavidas MK, Lu SE, Coyle SM, Oikawa LO, Macor M, Calvano SE, Lowry SF (2010) Voluntarily produced increases in heart rate variability modulate autonomic effects of endotoxin-induced systemic inflammation: an exploratory study. Int J Ambient Energy 35(4):303–315Google Scholar
  28. 28.
    Li Z, Wang C, Mak AF, Chow DH (2005) Effects of acupuncture on heart rate variability in normal subjects under fatigue and non-fatigue state. Eur J Appl Physiol 94(5–6):633–640CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Instrumentation and Control EngineeringCollege of Engineering PunePuneIndia

Personalised recommendations