Advertisement

Introductions and Definitions of R

  • Farhad Hosseinzadeh Lotfi
  • Ali EbrahimnejadEmail author
  • Mohsen Vaez-Ghasemi
  • Zohreh Moghaddas
Chapter
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 386)

Abstract

R is a mathematical and object-oriented open source programming language designed first for statistical computing. But, this software is powerful for dealing with optimization models. Variety of optimization moles such as linear, non-linear, integer, binary, and quadratic problems can be considered to be solved in this software. In this chapter some basic definition about R and required commands used in writing DEA models with R codes will be presented. All the commands are review sequentially according to their concepts. Also, for each command some numerical examples are also provided for clarifing the usage of commands for the readers.

Keywords

R software Basic commands and definitions R functions 

References

  1. 1.
    T.M. Davies, The Book of R. (No Starch Press, California, 2016), p. 832. ISBN-13:978-1-59327-651-5Google Scholar
  2. 2.
    N. Matloff, The Art of R Programming. (Publisher William Pollock, California, 2011). ISBN-13: 978-1-59327-384-2Google Scholar
  3. 3.
    R. Cotton, Learning R. (OReilly Media, California, 2013). ISBN: 9781449357160Google Scholar
  4. 4.
    R. Kabacoff. R in action. (Manning Publication Co, New York, 2015), 608p. ISBN 9781617291388Google Scholar
  5. 5.
    N. Zumel, J. Mount, Practical Data Science with R. (Manning Publication Co, 2014), 416p. ISBN 9781617291562Google Scholar
  6. 6.
    J.P. Lander, R for Everyone: Advanced Analytics and Graphics. (Addison-Wesley Professional, Boston, 2014). ISBN 9780321888037Google Scholar
  7. 7.
    A. de Vries, J. Meys, R for Dummies. (Wiley, Hoboken, 2015). ISBN: 978-1-119-96284-7Google Scholar
  8. 8.
    F. Alvaro, Easy R Programming for Beginners. (Create Space Independent Publishing Platform, California, 2016). ISBN 13: 9781533685018Google Scholar
  9. 9.
    J. Adler, R in a Nutshell. (OReilly Media, 2012), 72413p. ISBN 9781449312084Google Scholar
  10. 10.
    C. Kleiber, A. Zeileis, Applied Econometrics with R (Use R!). (Springer, 2008). ISBN 13: 978-0387773162CrossRefGoogle Scholar
  11. 11.
    G. Petris, S. Petrone, Dynamic Linear Models with R (Use R!). (Springer, 2009). ISBN 13: 978-0387772370Google Scholar
  12. 12.
    P.S.P. Cowpertwait, A.V. Metcalfe, Introductory Time Series with R (Use R!). (Springer, 2009). ISBN 13: 978-0387886978Google Scholar
  13. 13.
    B. Everitt, T. Hothorn, An Introduction to Applied Multivariate Analysis with R (Use R!). (Springer, 2011). ISBN 978-1-4419-9650-3Google Scholar
  14. 14.
    W.E. Hart, C. Laird, J. Watson, D.L. Woodruff, Pyomo—Optimization Modeling in Python (Springer, Berlin, 2012) ISBN 978-1-4614-3226-5. ISBN 978-3-319-58821-6Google Scholar
  15. 15.
    J. Ledolter, Data Mining and Business Analytics with R. (Wiley, 2013). ISBN 13: 978-1118447147Google Scholar
  16. 16.
    K.M. Ramachandran, C.P. Tsokos, Mathematical Statistics with Applications in R. (Academic Press, 2014). ISBN 13: 978-0124171138Google Scholar
  17. 17.
    V.A. Bloomfield, Using R for Numerical Analysis in Science and Engineering. (Chapman & Hall/CRC The R Series, 2014). ISBN-13: 978-0124171138Google Scholar
  18. 18.
    M.J. Crawley, Statistics: An Introduction Using R. (Wiley, 2014). ISBN-13: 978-1118941096Google Scholar
  19. 19.
    C. Paulo, Modern Optimization with R. (Springer, 2014). ISBN 978-3-319-08263-9Google Scholar
  20. 20.
    C.L. Emilio, M.M. Javier, P.C. Mariano, Quality Control with R, An ISO Standards Approach. (Springer, 2015). ISBN 978-3-319-24046-6Google Scholar
  21. 21.
    J.L. Taveras, R for Excel Users: An Introduction to R for Excel Analysts. (Create Space Independent Publishing Platform, 2016). ISBN-13: 978-1500566357Google Scholar
  22. 22.
    B. Pfaff, Financial Risk Modelling and Portfolio Optimization with R. (Wiley, 2016). ISBN: 978-1-119-11966-1Google Scholar
  23. 23.
    G. James, D. Witten, T. Hastie, R. Tibshirani, An Introduction to Statistical Learning: with Applications in R. (Springer, 2017). ISBN-13: 978-1461471370. (Springer Texts in Statistics)Google Scholar
  24. 24.
    R. Yao, R: In 8 Hours, For Beginners, Learn Coding Fast!. (Independently Published, 2018). ISBN-13: 978-1731132178Google Scholar
  25. 25.
    R Core Team, R Language Definition. version 3.5.2 (2018-12-20). (2018). https://cran.r-project.org
  26. 26.
    R Core Team, R Data Import/Export. version 3.5.2 (2018-12-20). https://cran.r-project.org
  27. 27.
    R Core Team, An Introduction to R. Notes on R: A Programming Environment for Data Analysis and Graphics. Version 3.5.2 (2018-12-20). https://cran.r-project.org/
  28. 28.
    R Core Team, Internals. Version 3.5.2 (2018-12-20). (2018). https://cran.r-project.org
  29. 29.
    R Core Team, A Language and Environment for Statistical Computing. Reference Index. Version 3.5.2 (2018-12-20). (2018). https://cran.r-project.org/
  30. 30.
    R Core Team, Writing R Extensions. Version 3.5.2 (2018-12-20). (2018). https://cran.r-project.org/

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Farhad Hosseinzadeh Lotfi
    • 1
  • Ali Ebrahimnejad
    • 2
    Email author
  • Mohsen Vaez-Ghasemi
    • 3
  • Zohreh Moghaddas
    • 4
  1. 1.Department of Mathematics, Science and Research BranchIslamic Azad UniversityTehranIran
  2. 2.Department of Mathematics, Qaemshahr BranchIslamic Azad UniversityQaemshahrIran
  3. 3.Department of Mathematics, Rasht BranchIslamic Azad UniversityRashtIran
  4. 4.Department of Mathematics, Qazvin BranchIslamic Azad UniversityQazvinIran

Personalised recommendations