An Introduction to the Cardiac Action Potentials

  • Elizabeth Thong
  • Ayesha Ahmed
  • Kenneth T. MacLeodEmail author
Part of the Learning Materials in Biosciences book series (LMB)


Here we examine the origin of the ventricular action potential (AP), its constituent ionic currents and the channels through which these currents flow. Several examples will be used to help appreciate the clinical implications of modifying this excitation system. We end with a brief introduction to the origin of the pacemaker potential and the contemporary theories surrounding its generation.


  1. 1.
    Burkhard S, van Eif V, Garric L, Christoffels VM, Bakkers J (2017) On the evolution of the cardiac pacemaker. J Cardiovasc Dev Dis 4(2):4CrossRefGoogle Scholar
  2. 2.
    Grant AO (2009) Cardiac ion channels. Circ Arrhythmia Electrophysiol 2(2):185–194CrossRefGoogle Scholar
  3. 3.
    Klabunde RE (2012) Cardiovascular physiology concepts, 2nd edn. Lippincott Williams & Wilkins, PhiladelphiaGoogle Scholar
  4. 4.
    Hodgkin AL, Huxley AF (1952) A quantitative description of ion currents and its applications to conduction and excitation in nerve membranes. J Physiol 117:500CrossRefGoogle Scholar
  5. 5.
    MacLeod K (2014) An essential introduction to cardiac electrophysiology. Imperial College Press, LondonCrossRefGoogle Scholar
  6. 6.
    Wang Q, Shen J, Splawski I, Atkinson D, Li Z, Robinson JL et al (1995) SCN5A mutations associated with an inherited cardiac arrhythmia, long QT syndrome. Cell 80:805CrossRefGoogle Scholar
  7. 7.
    Gellens ME, George AL, Chen LQ, Chahine M, Horn R, Barchi RL et al (1992) Primary structure and functional expression of the human cardiac tetrodotoxin-insensitive voltage-dependent sodium channel. Proc Natl Acad Sci 89:554CrossRefGoogle Scholar
  8. 8.
    Kenyon JL, Gibbons WR (1979) Influence of chloride, potassium, and tetraethylammonium on the early outward current of sheep cardiac Purkinje fibers. J Gen Physiol 73(2):117–138CrossRefGoogle Scholar
  9. 9.
    Bartos DC, Grandi E, Ripplinger CM (2015) Ion channels in the heart. Compr Physiol 5(3):1423–1464CrossRefGoogle Scholar
  10. 10.
    Zygmunt AC (1992) Properties of the calcium-activated chloride current in heart. J Gen Physiol 99:391CrossRefGoogle Scholar
  11. 11.
    Marks AR (2003 Mar) Calcium and the heart: a question of life and death. J Clin Invest 111(5):597–600CrossRefGoogle Scholar
  12. 12.
    Bers DM, Perez-Reyes E (1999) Ca channels in cardiac myocytes: structure and function in Ca influx and intracellular Ca release. Cardiovasc Res 42:339CrossRefGoogle Scholar
  13. 13.
    Stone PH, Antman EM, Muller JE, Braunwald E (1980 Dec) Calcium channel blocking agents in the treatment of cardiovascular disorders. Part II: hemodynamic effects and clinical applications. Ann Intern Med 93(6):886–904CrossRefGoogle Scholar
  14. 14.
    Szentandrássy N, Nagy D, Hegyi B, Magyar J, Bányász T, Nánási PP (2015) Class IV antiarrhythmic agents: new compounds using an old strategy. Curr Pharm Des 21(8):977–1010CrossRefGoogle Scholar
  15. 15.
    Snyders DJ (1999) Structure and function of cardiac potassium channels. Cardiovasc Res 42:377CrossRefGoogle Scholar
  16. 16.
    Schmitt N, Grunnet M, Olesen S-P (2014) Cardiac potassium channel subtypes: new roles in repolarization and arrhythmia. Physiol Rev 94:609CrossRefGoogle Scholar
  17. 17.
    Roden DM (2016) Pharmacogenetics of potassium channel blockers. Card Electrophysiol Clin 8:385CrossRefGoogle Scholar
  18. 18.
    Dhamoon AS, Jalife J (2005) The inward rectifier current (IK1) controls cardiac excitability and is involved in arrhythmogenesis. Heart Rhythm 2:316CrossRefGoogle Scholar
  19. 19.
    Liu T-A, Chang H-K, Shieh R-C (2012) Revisiting inward rectification: K ions permeate through Kir2.1 channels during high-affinity block by spermidine. J Gen Physiol 139:245CrossRefGoogle Scholar
  20. 20.
    Santana LF, Cheng EP, Lederer WJ (2010) How does the shape of the cardiac action potential control calcium signaling and contraction in the heart? J Mol Cell Cardiol 49:901CrossRefGoogle Scholar
  21. 21.
    Antzelevitch C, Nesterenko V, Shryock JC, Rajamani S, Song Y, Belardinelli L (2014) The role of late I Na in development of cardiac arrhythmias. Handb Exp Pharmacol 221:137–168CrossRefGoogle Scholar
  22. 22.
    Mesirca P, Marger L, Toyoda F, Rizzetto R, Audoubert M, Dubel S et al (2013) The G-protein–gated K+ channel, IKACh, is required for regulation of pacemaker activity and recovery of resting heart rate after sympathetic stimulation. J Gen Physiol 142(2):113–126CrossRefGoogle Scholar
  23. 23.
    Tinker A, Aziz Q, Thomas A (2014) The role of ATP-sensitive potassium channels in cellular function and protection in the cardiovascular system. Br J Pharmacol 171:12–23CrossRefGoogle Scholar
  24. 24.
    Flagg TP, Nichols CG (2011) Cardiac KATP. Circ Arrhythmia Electrophysiol 4(6):796–798CrossRefGoogle Scholar
  25. 25.
    DiFrancesco D, Borer JS (2007) The funny current: cellular basis for the control of heart rate. Drugs 67(Suppl 2):15–24CrossRefGoogle Scholar
  26. 26.
    DiFrancesco D, Tortora P (1991) Direct activation of cardiac pacemaker channels by intracellular cyclic AMP. Nature 351(6322):145–147CrossRefGoogle Scholar
  27. 27.
    DiFrancesco D, Mangoni M (1994) Modulation of single hyperpolarization-activated channels (i(f)) by cAMP in the rabbit sino-atrial node. J Physiol 474(3):473–482CrossRefGoogle Scholar
  28. 28.
    Moosmang S, Stieber J, Zong X, Biel M, Hofmann F, Ludwig A (2001 Mar 15) Cellular expression and functional characterization of four hyperpolarization-activated pacemaker channels in cardiac and neuronal tissues. Eur J Biochem 268(6):1646–1652CrossRefGoogle Scholar
  29. 29.
    Robinson RB, Siegelbaum SA (2003) Hyperpolarization-activated cation currents: from molecules to physiological function. Annu Rev Physiol 65(1):453–480CrossRefGoogle Scholar
  30. 30.
    Difrancesco D (2010) The role of the funny current in pacemaker activity. Circ Res 106:434CrossRefGoogle Scholar
  31. 31.
    Maltsev VA, Lakatta EG (2008) Dynamic interactions of an intracellular Ca2+ clock and membrane ion channel clock underlie robust initiation and regulation of cardiac pacemaker function. Cardiovasc Res 77:274–284CrossRefGoogle Scholar
  32. 32.
    Bogdanov KY, Vinogradova TM, Lakatta EG (2001) Sinoatrial nodal cell ryanodine receptor and Na(+)-Ca(2+) exchanger: molecular partners in pacemaker regulation. Circ Res 88(12):1254–1258CrossRefGoogle Scholar
  33. 33.
    Rubenstein DS, Lipsius SL (1989) Mechanisms of automaticity in subsidiary pacemakers from cat right atrium. Circ Res 64(4):648–657CrossRefGoogle Scholar
  34. 34.
    Satoh H (1997) Electrophysiological actions of ryanodine on single rabbit sinoatrial nodal cells. Gen Pharmacol 28(1):31–38CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Elizabeth Thong
    • 1
  • Ayesha Ahmed
    • 1
    • 2
  • Kenneth T. MacLeod
    • 3
    Email author
  1. 1.Imperial College LondonLondonUK
  2. 2.The University of SheffieldSheffieldUK
  3. 3.National Heart and Lung Institute, Imperial College LondonLondonUK

Personalised recommendations