Myocardial Microstructure and Contractile Apparatus

  • Umamah Tarvala
  • Zohya KhaliqueEmail author
Part of the Learning Materials in Biosciences book series (LMB)


This chapter will address the anatomy of the heart from a microstructural perspective and review how the organisation of cardiomyocytes supports cardiac function. Both the helical arrangement of cardiomyocytes and the orientation of sheetlets will be examined. The potential of a novel technique called diffusion tensor cardiovascular magnetic resonance (DT-CMR) will be discussed, in particular its ability to non-invasively assess the cardiac microstructure in both health and disease.


  1. 1.
    Braunwald E, Ross J, Sonnenblick EH (1967) Mechanisms of contraction of the normal and failing heart. N Engl J Med 277:910CrossRefPubMedGoogle Scholar
  2. 2.
    Pope AJ, Sands GB, Smaill BH, LeGrice IJ (2008) Three-dimensional transmural organization of perimysial collagen in the heart. AJP Hear Circ Physiol. 295:H1243CrossRefGoogle Scholar
  3. 3.
    LeGrice I, Smaill B, Chai L, Edgar S, Gavin J, Hunter P (1995) Laminar structure of the heart: ventricular myocyte arrangement and connective tissue architecture in the dog. Am J Physiol Heart Circ Physiol 269:H571CrossRefGoogle Scholar
  4. 4.
    Huxley AF, Niedergerke R (1954) Structural changes in muscle during contraction: interference microscopy of living muscle fibres. Nature 173(4412):971–973CrossRefPubMedGoogle Scholar
  5. 5.
    Lehman W, Craig R, Vibert P (1994) Ca2+-induced tropomyosin movement in Limulus thin filaments revealed by three-dimensional reconstruction. Nature 368(6466):65–67CrossRefPubMedGoogle Scholar
  6. 6.
    Gilbert SH, Benson AP, Li P, Holden AV (2007) Regional localisation of left ventricular sheet structure: integration with current models of cardiac fibre, sheet and band structure. Eur J Cardiothorac Surg 32:231CrossRefPubMedGoogle Scholar
  7. 7.
    Pettigrew JB (1864) On the arrangement of the muscular fibres in the ventricles of the vertebrate heart, with physiological remarks. Philos Trans R Soc Lond 154:445–500CrossRefGoogle Scholar
  8. 8.
    Streeter DD, Spotnitz HM, Patel DP, Ross J, Sonnenblick EH (1969) Fiber orientation in the canine left ventricle during diastole and systole. Circ Res 24(3):339–347CrossRefPubMedGoogle Scholar
  9. 9.
    Sands GB, Smaill BH, LeGrice IJ (2008) Virtual sectioning of cardiac tissue relative to fiber orientation. In: 2008 30th annual international conference of the IEEE engineering in medicine and biology societyGoogle Scholar
  10. 10.
    Ferreira PF, Kilner PJ, Mcgill LA, Nielles-Vallespin S, Scott AD, Ho SY et al (2014) In vivo cardiovascular magnetic resonance diffusion tensor imaging shows evidence of abnormal myocardial laminar orientations and mobility in hypertrophic cardiomyopathy. J Cardiovasc Magn Reson 16:87CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Helm PA, Younes L, Beg MF, Ennis DB, Leclercq C, Faris OP et al (2006) Evidence of structural remodeling in the dyssynchronous failing heart. Circ Res 98:125CrossRefPubMedGoogle Scholar
  12. 12.
    Kung GL, Nguyen TC, Itoh A, Skare S, Ingels NB, Miller DC et al (2011) The presence of two local myocardial sheet populations confirmed by diffusion tensor MRI and histological validation. J Magn Reson Imaging 34:1080CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Harrington KB (2005) Direct measurement of transmural laminar architecture in the anterolateral wall of the ovine left ventricle: new implications for wall thickening mechanics. AJP Hear Circ Physiol. 288(3):H1324–H1330CrossRefGoogle Scholar
  14. 14.
    Kalam K, Otahal P, Marwick TH (2014) Prognostic implications of global LV dysfunction: a systematic review and meta-analysis of global longitudinal strain and ejection fraction. Heart 100:1673CrossRefPubMedGoogle Scholar
  15. 15.
    Moore CC, Lugo-Olivieri CH, McVeigh ER, Zerhouni EA (2000) Three-dimensional systolic strain patterns in the normal human left ventricle: characterization with tagged MR imaging. Radiology 214:453CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Yingchoncharoen T, Agarwal S, Popović ZB, Marwick TH (2013) Normal ranges of left ventricular strain: a meta-analysis. J Am Soc Echocardiogr 26:185CrossRefPubMedGoogle Scholar
  17. 17.
    Huxley H, Hanson J (1954) Changes in the cross-striations of muscle during contraction and stretch and their structural interpretation. Nature 173(4412):973–976CrossRefPubMedGoogle Scholar
  18. 18.
    Layland J, Solaro RJ, Shah AM (2005) Regulation of cardiac contractile function by troponin I phosphorylation. Cardiovasc Res 66:12CrossRefPubMedGoogle Scholar
  19. 19.
    Fabiato A, Fabiato F (1975) Dependence of the contractile activation of skinned cardiac cells on the sarcomere length. Nature 256:54CrossRefPubMedGoogle Scholar
  20. 20.
    Sonnenblick EH, Ross J, Covell JW, Spotnitz HM, Spiro D (1967) The ultrastructure of the heart in systole and diastole. Chantes in sarcomere length. Circ Res 21:423CrossRefPubMedGoogle Scholar
  21. 21.
    Spotnitz HM, Spotnitz WD, Cottrell TS, Spiro D, Sonnenblick EH (1974) Cellular basis for volume related wall thickness changes in the rat left ventricle. J Mol Cell Cardiol 6:317CrossRefPubMedGoogle Scholar
  22. 22.
    LeGrice IJ, Takayama Y, Covell JW (1995) Transverse shear along myocardial cleavage planes provides a mechanism for normal systolic wall thickening. Circ Res 77:182CrossRefPubMedGoogle Scholar
  23. 23.
    Cheng A, Nguyen TC, Malinowski M, Daughters GT, Miller DC, Ingels NB (2008) Heterogeneity of left ventricular wall thickening mechanisms. Circulation 118:713CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Costa KD, Takayama Y, McCulloch AD, Covell JW (1999) Laminar fiber architecture and three-dimensional systolic mechanics in canine ventricular myocardium. Am J Physiol Circ Physiol. 276:H595CrossRefGoogle Scholar
  25. 25.
    Nielles-Vallespin S, Mekkaoui C, Gatehouse P, Reese TG, Keegan J, Ferreira PF et al (2013) In vivo diffusion tensor MRI of the human heart: reproducibility of breath-hold and navigator-based approaches. Magn Reson Med 70:454CrossRefPubMedGoogle Scholar
  26. 26.
    Nielles-Vallespin S, Khalique Z, Ferreira PF, de Silva R, Scott AD, Kilner P et al (2017) Assessment of myocardial microstructural dynamics by in vivo diffusion tensor cardiac magnetic resonance. J Am Coll Cardiol 69:661CrossRefPubMedGoogle Scholar
  27. 27.
    Reese TG, Weisskoff RM, Smith RN, Rosen BR, Dinsmore RE, Wedeen VJ (1995) Imaging myocardial fiber architecture in vivo with magnetic resonance. Magn Reson Med 34:786CrossRefPubMedGoogle Scholar
  28. 28.
    Scollan DF, Holmes A, Winslow R, Forder J (1998) Histological validation of myocardial microstructure obtained from diffusion tensor magnetic resonance imaging. Am J Physiol Circ Physiol 275:H2308CrossRefGoogle Scholar
  29. 29.
    Holmes AA, Scollan DF, Winslow RL (2000) Direct histological validation of diffusion tensor MRI in formaldehyde- fixed myocardium. Magn Reson Med 44:157CrossRefPubMedGoogle Scholar
  30. 30.
    Hsu EW, Muzikant AL, Matulevicius SA, Penland RC, Henriquez CS (1998) Magnetic resonance myocardial fiber-orientation mapping with direct histological correlation. Am J Physiol Circ Physiol. 274:H1627CrossRefGoogle Scholar
  31. 31.
    Chen J (2005) Regional ventricular wall thickening reflects changes in cardiac fiber and sheet structure during contraction: quantification with diffusion tensor MRI. AJP Hear Circ Physiol 289:H1898CrossRefGoogle Scholar
  32. 32.
    Rüssel IK, Götte MJW, Bronzwaer JG, Knaapen P, Paulus WJ, van Rossum AC (2009) Left ventricular torsion. An expanding role in the analysis of myocardial dysfunction. JACC Cardiovasc Imaging 2(5):648–655CrossRefPubMedGoogle Scholar
  33. 33.
    Sengupta PP, Tajik AJ, Chandrasekaran K, Khandheria BK (2008) Twist mechanics of the left ventricle. Principles and application. JACC Cardiovasc Imaging 1(3):366–376CrossRefPubMedGoogle Scholar
  34. 34.
    Young AA, Cowan BR (2012) Evaluation of left ventricular torsion by cardiovascular magnetic resonance. J Cardiovasc Magn Reson 14:49CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Wu MT, Su MY, Huang YL, Chiou KR, Yang P, Pan HB et al (2009) Sequential changes of myocardial microstructure in patients postmyocardial infarction by diffusion-tensor cardiac mr correlation with left ventricular structure and function. Circ Cardiovasc Imaging 2:32CrossRefPubMedGoogle Scholar
  36. 36.
    Wu MT, Tseng WYI, Su MYM, Liu CP, Chiou KR, Wedeen VJ et al (2006) Diffusion tensor magnetic resonance imaging mapping the fiber architecture remodeling in human myocardium after infarction: correlation with viability and wall motion. Circulation 114:1036CrossRefPubMedGoogle Scholar
  37. 37.
    Mekkaoui C, Jackowski MP, Kostis WJ, Stoeck CT, Thiagalingam A, Reese TG et al (2018) Myocardial scar delineation using diffusion tensor magnetic resonance tractography. J Am Heart Assoc 7(3):e007834CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Pinto JR, Parvatiyar MS, Jones MA, Liang J, Ackerman MJ, Potter JD (2009) A functional and structural study of tropon in C mutations related to hypertrophic cardiomyopathy. J Biol Chem 284:19090CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Willott RH, Gomes AV, Chang AN, Parvatiyar MS, Pinto JR, Potter JD (2010) Mutations in Troponin that cause HCM, DCM AND RCM: what can we learn about thin filament function? J Mol Cell Cardiol 48:882CrossRefPubMedGoogle Scholar
  40. 40.
    Khalique Z, Ferreira PF, Scott AD, Nielles-Vallespin S, Kilner PJ, Kutys R et al (2018) Deranged myocyte microstructure in situs inversus totalis demonstrated by diffusion tensor cardiac magnetic resonance. JACC Cardiovasc Imaging 11(9):1360–1362CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Barts and The London School of Medicine and Denstistry (QMUL)LondonUK
  2. 2.National Heart and Lung InstituteImperial College LondonLondonUK

Personalised recommendations