Advertisement

Later Mechanisms of Cardiac Development

  • Beth Taylor
  • Thomas BrandEmail author
Chapter
Part of the Learning Materials in Biosciences book series (LMB)

Abstract

This chapter expands upon selected processes occurring following the establishment of the first and second heart fields, previously discussed in ► Chap.  2. We will begin by exploring the establishment of the left-right axis, both in terms of ionic currents involved, the relevant signalling mediators and any mechanical interplay. We will then examine the development of the cardiac pacemaker, beginning from the electrical activity in the tubular heart, and its progressive compartmentalisation to the sinoatrial (and potentially atrioventricular) nodes. Finally, after analysing the valvular architecture of the heart and origin of the epicardium, we will conclude by briefly discussing the potential utilisation of ectopic Tbx18 induction to generate a biological pacemaker.

References

  1. 1.
    Brand T (2003) Heart development: molecular insights into cardiac specification and early morphogenesis. Dev Biol 258:1–19CrossRefPubMedGoogle Scholar
  2. 2.
    Monsoro-Burq A, Le Douarin NM (2001) BMP4 plays a key role in left-right patterning in chick embryos by maintaining Sonic Hedgehog asymmetry. Mol Cell 7:789–799CrossRefPubMedGoogle Scholar
  3. 3.
    Campione M et al (2001) Pitx2 expression defines a left cardiac lineage of cells: evidence for atrial and ventricular molecular isomerism in the iv/iv mice. Dev Biol 231:252–264CrossRefPubMedGoogle Scholar
  4. 4.
    Gros J, Feistel K, Viebahn C, Blum M, Tabin CJ (2009) Cell movements at Hensen’s node establish left/right asymmetric gene expression in the chick. Science 324:941–944CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Nonaka S, Tanaka Y, Okada Y, Takeda S, Harada S, Kanai Y, Kido M, Hirokawa N (1998) Randomization of left-right asymmetry due to loss of nodal cilia generating leftward flow of extraembryonic fluid in mice lacking KIF3B motor protein. Cell 95:829–837CrossRefGoogle Scholar
  6. 6.
    Ocana OH et al (2017) A right-handed signalling pathway drives heart looping in vertebrates. Nature 549:86–90CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2008) Molecular biology of the cell. Garland Science, New York. Figure 22-87aGoogle Scholar
  8. 8.
    Masson-Pevet MA et al (1984) Pacemaker cell types in the rabbit sinus node; a correlative ultrastructural and electrophysiological study. J Mol Cell Cardiol 16:53–63CrossRefPubMedGoogle Scholar
  9. 9.
    Lakatta EG, Maltsev VA, Vinogradova TM (2010) A coupled SYSTEM of intracellular Ca2+ clocks and surface membrane voltage clocks controls the timekeeping mechanism of the heart’s pacemaker. Circ Res 106:659–673CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    DiFrancesco D (2010) The role of the funny current in pacemaker activity. Circ Res 106:434–444CrossRefPubMedGoogle Scholar
  11. 11.
    Van Weerd JH, Christoffels VM (2016) The formation and function of the cardiac conduction system. Development 53:197–210CrossRefGoogle Scholar
  12. 12.
    Cai X et al (2011) Myocardial Tbx20 regulates early atrioventricular canal formation and endocardial epithelial-mesenchymal transition via Bmp2. Dev Biol 360:381–390CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Wiese C, Grieskamp T, Airik R, Mommersterg MT, Gardiwal A, De Gier-de Vries C et al (2009) Formation of the sinus node head and differentiation of sinus node myocardium are independently regulated by Tbx18 and Tbx3. Circ Res 104:388–397CrossRefPubMedGoogle Scholar
  14. 14.
    Marger L et al (2011) Pacemaker activity and ionic currents in mouse atrioventricular node cells. Channels (Austin) 5:241–250CrossRefGoogle Scholar
  15. 15.
    Marionneau C, Couette B, Liu J, Li H, Mangoni ME, Nargeot J, Lei M, Escande D, Demolombe S (2005) Specific pattern of ionic channel gene expression associated with pacemaker activity in the mouse heart. J Physiol 562:223–234CrossRefPubMedGoogle Scholar
  16. 16.
    Bernanke DH, Markwald RR (1982) Migratory behaviour of cardiac cushion tissue cells in a collagen-lattice culture system. Dev Biol 91:235–245CrossRefPubMedGoogle Scholar
  17. 17.
    Männer J (1992) The development of pericardial villi in the chick embryo. Anat Embryol 186:379–385CrossRefPubMedGoogle Scholar
  18. 18.
    Rodgers LS, Lalani S, Runyan RB, Camenisch TD (2008) Differential growth and multicellular villi direct proepicardial translocation to the developing mouse heart. Dev Dyn 237:145–152CrossRefPubMedGoogle Scholar
  19. 19.
    Schlueter J, Brand T (2011) Origin and fates of the proepicardium. Aswan Heart Centre Science & Practice Series. QScience, Hamad Bin Khalifa University Press, Doha, Quatar, p 11Google Scholar
  20. 20.
    Bressan M, Liu G, Mikawa T (2013) Early mesodermal cues assign avian cardiac pacemaker fate potential in a tertiary heart field. Science 340:744–748CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Brand T (2016) Tbx18 and the generation of a biological pacemaker. Are we there yet? J Mol Cell Cardiol 97:263–265CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Kapoor N, Galang G, Marban E, Cho HC (2011) Transcriptional suppression of connnexin43 by TBX18 undermines cell-cell electrical coupling in postnatal cardiomyocytes. J Biol Chem 286:14073–14079CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Hu YF, Dawkins JF, Cho HC, Marban E, Cingolani E (2014) Biological pacemaker created by minimally invasive somatic reprogramming in pigs with complete heart block. Sci Transl Med 6:245ra94CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Greulich F, Trowe MO, Leffler A, Stoetzer C, Farin HF, Kispert A (2016) Misexpression of Tbx18 in cardiac chambers of fetal mice interferes with chamber-specific developmental programs but does not induce a pacemaker-like gene signature. J Mol Cell Cardiol 97:140–149CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Imperial College LondonLondonUK
  2. 2.National Heart and Lung Institute, Myocardial Function, Imperial College LondonLondonUK

Personalised recommendations