Advertisement

Early Mechanisms of Cardiac Development

  • Jack Griffiths
  • Thomas BrandEmail author
Chapter
Part of the Learning Materials in Biosciences book series (LMB)

Abstract

This chapter initially introduces the importance of animal models in understanding cardiac development. We will discuss the early stages of embryonic development, including gastrulation, formation of the linear heart tube and the looping process. We will then explore the concept of the organiser during early vertebrate development using the example of the Spemann-Mangold organiser of the amphibian embryo. Finally, we will expand on how cells in the embryo are able to interpret morphogen gradients by introducing the French Flag Model.

References

  1. 1.
    Wolpert L, Tickle C (2011) Principles of development, vol 616, 4th edn. Oxford University Press, OxfordGoogle Scholar
  2. 2.
    Bakkers J (2011) Zebrafish as a model to study cardiac development and human cardiac disease. Cardiovasc Res 91:279CrossRefGoogle Scholar
  3. 3.
    Wittig J, Münsterberg A (2016) The early stages of heart development: insights from chicken embryos. J Cardiovasc Dev Dis 3:12CrossRefGoogle Scholar
  4. 4.
    Zaffran S, Frasch M (2002) Early signals in cardiac development. Circ Res 91:457CrossRefGoogle Scholar
  5. 5.
    Brand T (2003) Heart development: molecular insights into cardiac specification and early morphogenesis. Dev Biol 258:1CrossRefGoogle Scholar
  6. 6.
    Gilbert S, F, Bareresi MJF (2016) Developmental biology, 11th edn. Sinauer, Sunderland, MA, USA. 888 p. 444Google Scholar
  7. 7.
    Wolpert L (1969) Positional information and the spatial pattern of cellular differentiation. J Theor Biol 25:1CrossRefGoogle Scholar
  8. 8.
    Niehrs C (2004) Regionally specific induction by the Spemann-Mangold organizer. Nat Rev Genet 5:425CrossRefGoogle Scholar
  9. 9.
    Bodmer R (1993) The gene tinman is required for specification of the heart and visceral muscles in Drosophila. Development 118:179Google Scholar
  10. 10.
    Benson DW, Silberbach GM, Kavanaugh-McHugh A, Cottrill C, Zhang Y, Riggs S et al (1999) Mutations in the cardiac transcription factor NKX2.5 affect diverse cardiac developmental pathways. J Clin Invest 104:1567CrossRefGoogle Scholar
  11. 11.
    Lyons I, Parsons LM, Hartley L, Li R, Andrews JE, Robb L et al (1995) Myogenic and morphogenetic defects in the heart tubes of murine embryos lacking the homeo box gene Nkx2-5. Genes Dev 9:1654CrossRefGoogle Scholar
  12. 12.
    Dyer LA, Kirby ML (2009) The role of secondary heart field in cardiac development. Dev Biol 336:137CrossRefGoogle Scholar
  13. 13.
    de la Cruz MV, Gmez CS, Arteaga MM, Arguello C (1977) Experimental study of the development of the truncus and the conus in the chick embryo. J Anat 123:661PubMedPubMedCentralGoogle Scholar
  14. 14.
    Cai CL, Liang X, Shi Y, Chu PH, Pfaff SL, Chen J et al (2003) Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart. Dev Cell 5:877CrossRefGoogle Scholar
  15. 15.
    Rothenberg F, Hitomi M, Fisher SA, Watanabe M (2002) Initiation of apoptosis in the developing avian outflow tract myocardium. Dev Dyn 223:469CrossRefGoogle Scholar
  16. 16.
    Parmacek MS, Epstein JA (2005) Pursuing cardiac progenitors: regeneration redux. Cell 120:295CrossRefGoogle Scholar
  17. 17.
    Bruneau BG (2013) Signaling and transcriptional networks in heart development and regeneration. Cold Spring Harb Perspect Biol 5:a008292CrossRefGoogle Scholar
  18. 18.
    Männer J (2009) The anatomy of cardiac looping: a step towards the understanding of the morphogenesis of several forms of congenital cardiac malformations. Clin Anat 22:21CrossRefGoogle Scholar
  19. 19.
    Young KA, Wise JA, DeSaix P, Kruse DH, Poe B, Johnson E, et al. Anatomy & physiology. 1st ed. OpenStax College; 2013. 1335 pGoogle Scholar
  20. 20.
    Hiermeier F, Männer J (2017) Kinking and torsion can significantly improve the efficiency of valveless pumping in periodically compressed tubular conduits. Implications for understanding of the form-function relationship of embryonic heart tubes. J Cardiovasc Dev Dis 4:19Google Scholar
  21. 21.
    Jaffrin MY, Shapiro AH (1971) Peristaltic pumping. Annu Rev Fluid Mech 3:13CrossRefGoogle Scholar
  22. 22.
    Liebau G (1954) Über ein ventilloses Pumpprinzip. Naturwissenschaften 41:327CrossRefGoogle Scholar
  23. 23.
    Liebau G (1955) Herzpulsation und Blutbewegung. Z Gesamte Exp Med 125:482CrossRefGoogle Scholar
  24. 24.
    Männer J, Wessel A, Yelbuz TM (2010) How does the tubular embryonic heart work? Looking for the physical mechanism generating unidirectional blood flow in the valveless embryonic heart tube. Dev Dyn 239:1035CrossRefGoogle Scholar
  25. 25.
    Forouhar AS, Liebling M, Hickerson A, Nasiraei-Moghaddam A, Tsai HJ, Hove JR et al (2006) The embryonic vertebrate heart tube is a dynamic suction pump. Science 312:751CrossRefGoogle Scholar
  26. 26.
    Taber LA, Zhang J, Perucchio R (2007) Computational model for the transition from peristaltic to pulsatile flow in the embryonic heart tube. J Biomech Eng 129:441CrossRefGoogle Scholar
  27. 27.
    Baird A, King T, Miller LA (2012) Numerical study of scaling effects in peristalsis and dynamic suction pumping. In: Proceedings of the AMS, special session on biological fluid dynamics: modeling, computations, and applications, New Orleans, pp 129–148Google Scholar
  28. 28.
    Tu S, Chi NC (2012) Zebrafish models in cardiac development and congenital heart birth defects. Differentiation 84:4CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Imperial College LondonLondonUK
  2. 2.National Heart and Lung Institute, Myocardial Function, Imperial College LondonLondonUK

Personalised recommendations