Advertisement

Endothelial Function in Normal and Diseased Vessels

  • Mridul Rana
  • Zarius Ferozepurwalla
  • Justin MasonEmail author
Chapter
Part of the Learning Materials in Biosciences book series (LMB)

Abstract

This chapter provides a comprehensive overview of the endothelium, its physiology and its dysfunction. We will begin by exploring the origin of endothelial cells and their importance in the regulation of blood pressure, inflammation and vascular homeostasis. From there, leukocyte transmigration will be expanded upon, with a discussion on relevant novel research. Next, the interplay of haemodynamic factors, namely differential flow patterns, on the endothelium will be explored, including several key mechanosignalling facets. Finally, the role of nitric oxide and endothelin-1 in regulating vascular tone will be examined.

References

  1. 1.
    Schatteman GC, Awad O (2004) Hemangioblasts, angioblasts, and adult endothelial cell progenitors. Anatomical record – part a discoveries in molecular, cellular, and evolutionary biology. Anat Rec Part A 276A:13–21Google Scholar
  2. 2.
    McCarron JG, Lee MD, Wilson C (2017) The endothelium solves problems that endothelial cells do not know exist. Trends Pharmacol Sci 38:322CrossRefGoogle Scholar
  3. 3.
    Rajendran P, Rengarajan T, Thangavel J, Nishigaki Y, Sakthisekaran D, Sethi G et al (2013) The vascular endothelium and human diseases. Int J Biol Sci 9:1057CrossRefGoogle Scholar
  4. 4.
    Huo Y, Schober A, Forlow SB, Smith DF, Hyman MC, Jung S et al (2003) Circulating activated platelets exacerbate atherosclerosis in mice deficient in apolipoprotein E. Nat Med 9:61CrossRefGoogle Scholar
  5. 5.
    Ley K, Laudanna C, Cybulsky MI, Nourshargh S (2007) Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol 7:678CrossRefGoogle Scholar
  6. 6.
    McEver RP, Cummings RD (1997) Role of PSGL-1 binding to selectins in leukocyte recruitment. J Clin Investig 100:485CrossRefGoogle Scholar
  7. 7.
    Marshall BT, Long M, Piper JW, Yago T, McEver RP, Zhu C (2003) Direct observation of catch bonds involving cell-adhesion molecules. Nature 423:190CrossRefGoogle Scholar
  8. 8.
    Kinashi T (2005) Intracellular signalling controlling integrin activation in lymphocytes. Nat Rev Immunol 5:546CrossRefGoogle Scholar
  9. 9.
    Ellies LG, Tsuboi S, Petryniak B, Lowe JB, Fukuda M, Marth JD (1998) Core 2 oligosaccharide biosynthesis distinguishes between selectin ligands essential for leukocyte homing and inflammation. Immunity 9:881CrossRefGoogle Scholar
  10. 10.
    Huo Y, Hafezi-Moghadam A, Ley K (2000) Role of vascular cell adhesion molecule-1 and fibronectin connecting segment-1 in monocyte rolling and adhesion on early atherosclerotic lesions. Circ Res 87:153CrossRefGoogle Scholar
  11. 11.
    Giagulli C, Ottoboni L, Caveggion E, Rossi B, Lowell C, Constantin G et al (2006) The Src family kinases Hck and Fgr are dispensable for inside-out, chemoattractant-induced signaling regulating beta 2 integrin affinity and valency in neutrophils, but are required for beta 2 integrin-mediated outside-in signaling involved in sustained adhesion. J Immunol 177(1):604–611CrossRefGoogle Scholar
  12. 12.
    Campanero MR, Del Pozo MA, Arroyo AG, Sánchez-Mateos P, Hernández-Caselles T, Craig A et al (1993) ICAM-3 interacts with LFA-1 and regulates the LFA-1/ICAM-1 cell adhesion pathway. J Cell Biol 123:1007CrossRefGoogle Scholar
  13. 13.
    Barreiro O, Yáñez-Mó M, Serrador JM, Montoya MC, Vicente-Manzanares M, Tejedor R et al (2002) Dynamic interaction of VCAM-1 and ICAM-1 with moesin and ezrin in a novel endothelial docking structure for adherent leukocytes. J Cell Biol 157:1233CrossRefGoogle Scholar
  14. 14.
    Muller WA (2003) Leukocyte-endothelial-cell interactions in leukocyte transmigration and the inflammatory response. Trends Immunol 24:326CrossRefGoogle Scholar
  15. 15.
    Nourshargh S (2006) The role of JAM-A and PECAM-1 in modulating leukocyte infiltration in inflamed and ischemic tissues. J Leukoc Biol 80:714CrossRefGoogle Scholar
  16. 16.
    Dejana E (2004) Endothelial cell-cell junctions: happy together. Nat Rev Mol Cell Biol 5:261CrossRefGoogle Scholar
  17. 17.
    Ku DN, Giddens DP, Zarins CK, Glagov S (1985) Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arterioscler Thromb Vasc Biol 5(3):293–302Google Scholar
  18. 18.
    Cheng C, Tempel D, Van Haperen R, Van Der Baan A, Grosveld F, Daemen MJAP et al (2006) Atherosclerotic lesion size and vulnerability are determined by patterns of fluid shear stress. Circulation 113:2744CrossRefGoogle Scholar
  19. 19.
    Pan S (2009) Molecular mechanisms responsible for the atheroprotective effects of laminar shear stress. Antioxid Redox Signal 11:1669CrossRefGoogle Scholar
  20. 20.
    Casa LDC, Deaton DH, Ku DN (2015) Role of high shear rate in thrombosis. J Vasc Surg 61:1068CrossRefGoogle Scholar
  21. 21.
    Florian JA (2003) Heparan sulfate proteoglycan is a mechanosensor on endothelial cells. Circ Res 93:e136CrossRefGoogle Scholar
  22. 22.
    Baeyens N, Mulligan-Kehoe MJ, Corti F, Simon DD, Ross TD, Rhodes JM et al (2014) Syndecan 4 is required for endothelial alignment in flow and atheroprotective signaling. Proc Natl Acad Sci 111:17308CrossRefGoogle Scholar
  23. 23.
    Park H, Go YM, Darji R, Choi JW, Lisanti MP, Maland MC et al (2000) Caveolin-1 regulates shear stress-dependent activation of extracellular signal-regulated kinase. Am J Physiol Heart Circ Physiol 278:H1285CrossRefGoogle Scholar
  24. 24.
    Hierck BP, Van Der Heiden K, Alkemade FE, Van De Pas S, Van Thienen JV, Groenendijk BCW et al (2008) Primary cilia sensitize endothelial cells for fluid shear stress. Dev Dyn 237:725CrossRefGoogle Scholar
  25. 25.
    Brakemeier S, Kersten A, Eichler I, Grgic I, Zakrzewicz A, Hopp H et al (2003) Shear stress-induced up-regulation of the intermediate-conductance Ca2+−activated K+channel in human endothelium. Cardiovasc Res 60(3):488–496CrossRefGoogle Scholar
  26. 26.
    Boycott HE, Barbier CSM, Eichel CA, Costa KD, Martins RP, Louault F et al (2013) Shear stress triggers insertion of voltage-gated potassium channels from intracellular compartments in atrial myocytes. Proc Natl Acad Sci 110:E3955CrossRefGoogle Scholar
  27. 27.
    Chachisvilis M, Zhang Y-L, Frangos JA (2006) G protein-coupled receptors sense fluid shear stress in endothelial cells. Proc Natl Acad Sci 103:15463CrossRefGoogle Scholar
  28. 28.
    Tkachenko E, Gutierrez E, Saikin SK, Fogelstrand P, Kim C, Groisman A et al (2013) The nucleus of endothelial cell as a sensor of blood flow direction. Biol Open 2:1007CrossRefGoogle Scholar
  29. 29.
    Shyy JYJ, Chien S (1997) Role of integrins in cellular responses to mechanical stress and adhesion. Curr Opin Cell Biol 9:707CrossRefGoogle Scholar
  30. 30.
    Tzima E, Irani-Tehrani M, Kiosses WB, Dejana E, Schultz DA, Engelhardt B et al (2005) A mechanosensory complex that mediates the endothelial cell response to fluid shear stress. Nature 437:426CrossRefGoogle Scholar
  31. 31.
    Nayak L, Lin Z, Jain MK (2011) “Go with the flow”: how Krüppel-like factor 2 regulates the vasoprotective effects of shear stress. Antioxid Redox SignalGoogle Scholar
  32. 32.
    Warboys CM, De Luca A, Amini N, Luong L, Duckles H, Hsiao S et al (2014) Disturbed flow promotes endothelial senescence via a p53-dependent pathway. Arterioscler Thromb Vasc Biol 34:985CrossRefGoogle Scholar
  33. 33.
    Kinderlerer AR, Ali F, Johns M, Lidington EA, Leung V, Boyle JJ et al (2008) KLF2-dependent, shear stress-induced expression of CD59: a novel cytoprotective mechanism against complement-mediated injury in the vasculature. J Biol Chem 283:14636CrossRefGoogle Scholar
  34. 34.
    Halestrap AP, Clarke SJ, Khaliulin I (2007) The role of mitochondria in protection of the heart by preconditioning. Biochim Biophys Acta Bioenerg 1767:1007CrossRefGoogle Scholar
  35. 35.
    He X, Zeng H, Chen ST, Roman RJ, Aschner JL, Didion S et al (2017) Endothelial specific SIRT3 deletion impairs glycolysis and angiogenesis and causes diastolic dysfunction. J Mol Cell Cardiol 112:104CrossRefGoogle Scholar
  36. 36.
    Yang W, Nagasawa K, Münch C, Xu Y, Satterstrom K, Jeong S et al (2016) Mitochondrial sirtuin network reveals dynamic SIRT3-dependent deacetylation in response to membrane depolarization. Cell 167:985CrossRefGoogle Scholar
  37. 37.
    Förstermann U, Sessa WC (2012) Nitric oxide synthases: regulation and function. Eur Heart J 33:829Google Scholar
  38. 38.
    Siragusa M, Fleming I (2016) The eNOS signalosome and its link to endothelial dysfunction. Pflugers Archiv Eur J Physiol 468:1125CrossRefGoogle Scholar
  39. 39.
    Förstermann U, Münzel T (2006) Endothelial nitric oxide synthase in vascular disease: from marvel to menace. Circulation 113:1708CrossRefGoogle Scholar
  40. 40.
    Boo YC, Sorescu G, Boyd N, Shiojima I, Walsh K, Du J et al (2002) Shear stress stimulates phosphorylation of endothelial nitric-oxide synthase at Ser 1179 by Akt-independent mechanisms. Role of protein kinase. A J Biol ChemGoogle Scholar
  41. 41.
    Kowalczyk A, Kleniewska P, Goraca A (2015) The role of endothelin-1 and endothelin receptor antagonists in inflammatory response and sepsis. Arch Immunol Ther Exp 63:41CrossRefGoogle Scholar
  42. 42.
    Erdbruegger U, Haubitz M, Woywodt A (2006) Circulating endothelial cells: a novel marker of endothelial damage. Clin Chim Acta 373:17CrossRefGoogle Scholar
  43. 43.
    Hill JM, Zalos G, Halcox JPJ, Schenke WH, Waclawiw MA, Quyyumi AA et al (2003) Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med 348:593CrossRefGoogle Scholar
  44. 44.
    Laufs U, Werner N, Link A, Endres M, Wassmann S, Jürgens K et al (2004) Physical training increases endothelial progenitor cells, inhibits neointima formation, and enhances angiogenesis. Circulation 109:220CrossRefGoogle Scholar
  45. 45.
    Vasa M, Fichtlscherer S, Adler K, Aicher A, Martin H, Zeiher AM et al (2001) Increase in circulating endothelial progenitor cells by statin therapy in patients with stable coronary artery disease. CirculationGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Mridul Rana
    • 1
  • Zarius Ferozepurwalla
    • 1
  • Justin Mason
    • 2
    Email author
  1. 1.Imperial College LondonLondonUK
  2. 2.National Heart and Lung Institute, Vascular Sciences, Imperial College LondonLondonUK

Personalised recommendations