Molecular and Cellular Mechanisms of Angiogenesis

  • Zarius Ferozepurwalla
  • Jude Merzah
  • Lieze Thielemans
  • Graeme BirdseyEmail author
Part of the Learning Materials in Biosciences book series (LMB)


This chapter provides an overview of sprouting angiogenesis. We will begin by discussing the importance of vascular endothelial growth factor (VEGF) as the molecular conductor of this process, including its receptor interactions and subsequent signalling. At each step of this process, both the observable cellular changes and underlying molecular pathways will be explored. Competing models of lumen formation will be critically appraised, before we examine the reestablishment of vascular quiescence and importance of junctional stability via VE-cadherin interactions.


  1. 1.
    Semenza GL (2007) Vasculogenesis, angiogenesis, and arteriogenesis: mechanisms of blood vessel formation and remodeling. J Cell Biochem 102(4):840–847CrossRefPubMedGoogle Scholar
  2. 2.
    Simons M, Gordon E, Claesson-Welsh L (2016) Mechanisms and regulation of endothelial VEGF receptor signalling. Nat Rev Mol Cell Biol 17(10):611–625CrossRefPubMedGoogle Scholar
  3. 3.
    Hiratsuka S, Kataoka Y, Nakao K, Nakamura K, Morikawa S, Tanaka S et al (2005) Vascular endothelial growth factor A (VEGF-A) is involved in guidance of VEGF receptor-positive cells to the anterior portion of early embryos. Mol Cell Biol 25(1):355–363CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Carmeliet P, Ferreira V, Breier G, Pollefeyt S, Kieckens L, Gertsenstein M et al (1996) Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380(6573):435–439CrossRefGoogle Scholar
  5. 5.
    Shibuya M, Yamaguchi S, Yamane A, Ikeda T, Tojo A, Matsushime H, Sato M (1990) Nucleotide sequence and expression of a novel human receptor-type tyrosine kinase gene (flt) closely related to the fms family. Oncogene 5(4):519–524PubMedGoogle Scholar
  6. 6.
    Potente M, Gerhardt H, Carmeliet P (2011) Basic and therapeutic aspects of angiogenesis. Cell 146(6):873–887CrossRefGoogle Scholar
  7. 7.
    Schuermann A, Helker CSM, Herzog W (2014) Angiogenesis in zebrafish. Semin Cell Dev Biol 31:106–114CrossRefPubMedGoogle Scholar
  8. 8.
    Huang J, Zhao Q, Mooney SM, Lee FS (2002) Sequence determinants in hypoxia-inducible factor-1α for hydroxylation by the prolyl hydroxylases PHD1, PHD2, and PHD3. J Biol Chem 277(42):39792–39800CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Kaelin WG (2002) Molecular basis of the VHL hereditary cancer syndrome. Nat Rev Cancer 2(9):673–682CrossRefPubMedGoogle Scholar
  10. 10.
    Harris ES, Nelson WJ (2010) VE-cadherin: at the front, center, and sides of endothelial cell organization and function. Curr Opin Cell Biol 22(5):651–658CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Srinivasan R, Zabuawala T, Huang H, Zhang J, Gulati P, Fernandez S et al (2009) Erk1 and erk2 regulate endothelial cell proliferation and migration during mouse embryonic angiogenesis. PLoS One 4(12):e8283CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Shibuya M (2006) Vascular endothelial growth factor receptor-1 (VEGFR-1/Flt-1): a dual regulator for angiogenesis. Angiogenesis 9(4):225–230CrossRefPubMedGoogle Scholar
  13. 13.
    Kawamura H, Li X, Goishi K, Van Meeteren LA, Jakobsson L, Cébe-Suarez S et al (2008) Neuropilin-1 in regulation of VEGF-induced activation of p38MAPK and endothelial cell organization. Blood 112(9):3638–3649CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Lanahan A, Zhang X, Fantin A, Zhuang Z, Rivera-Molina F, Speichinger K et al (2013) The neuropilin 1 cytoplasmic domain is required for VEGF-A-dependent arteriogenesis. Dev Cell 25(2):156–168CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Tse BWC, Volpert M, Ratther E, Stylianou N, Nouri M, McGowan K et al (2017) Neuropilin-1 is upregulated in the adaptive response of prostate tumors to androgen-targeted therapies and is prognostic of metastatic progression and patient mortality. Oncogene 36(24):3417–3427CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Gerhardt H, Golding M, Fruttiger M, Ruhrberg C, Lundkvist A, Abramsson A et al (2003) VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol 161(6):1163–1177CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Aspalter IM, Gordon E, Dubrac A, Ragab A, Narloch J, Vizán P et al (2015) Alk1 and Alk5 inhibition by Nrp1 controls vascular sprouting downstream of Notch. Nat Commun 6:7264CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Jakobsson L, Franco CA, Bentley K, Collins RT, Ponsioen B, Aspalter IM et al (2010) Endothelial cells dynamically compete for the tip cell position during angiogenic sprouting. Nat Cell Biol 12(10):943–953CrossRefPubMedGoogle Scholar
  19. 19.
    Segarra M, Williams CK, De La Luz Sierra M, Bernardo M, McCormick PJ, Maric D et al (2008) DII4 activation of Notch signaling reduces tumor vascularity and inhibits tumor growth. Blood 112(5):1904–1911CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Lobov IB, Renard RA, Papadopoulos N, Gale NW, Thurston G, Yancopoulos GD et al (2007) Delta-like ligand 4 (Dll4) is induced by VEGF as a negative regulator of angiogenic sprouting. Proc Natl Acad Sci 104(9):3219–3224CrossRefPubMedGoogle Scholar
  21. 21.
    Blanco R, Gerhardt H (2013) VEGF and Notch in tip and stalk cell selection. Cold Spring Harb Perspect Med 3(1):a006569CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Tammela T, Zarkada G, Wallgard E, Murtomäki A, Suchting S, Wirzenius M et al (2008) Blocking VEGFR-3 suppresses angiogenic sprouting and vascular network formation. Nature 454(7204):656–660CrossRefPubMedGoogle Scholar
  23. 23.
    Suchting S, Freitas C, le Noble F, Benedito R, Breant C, Duarte A et al (2007) The Notch ligand Delta-like 4 negatively regulates endothelial tip cell formation and vessel branching. Proc Natl Acad Sci 104(9):3225–3230CrossRefPubMedGoogle Scholar
  24. 24.
    Benedito R, Roca C, Sörensen I, Adams S, Gossler A, Fruttiger M et al (2009) The notch ligands Dll4 and Jagged1 have opposing effects on angiogenesis. Cell 137(6):1124–1135CrossRefGoogle Scholar
  25. 25.
    Raftopoulou M, Hall A (2004) Cell migration: Rho GTPases lead the way. Dev Biol 265(1):23–32CrossRefPubMedGoogle Scholar
  26. 26.
    Fantin A, Vieira JM, Gestri G, Denti L, Schwarz Q, Prykhozhij S et al (2010) Tissue macrophages act as cellular chaperones for vascular anastomosis downstream of VEGF-mediated endothelial tip cell induction. Blood 116(5):829–840CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Kamei M, Brian Saunders W, Bayless KJ, Dye L, Davis GE, Weinstein BM (2006) Endothelial tubes assemble from intracellular vacuoles in vivo. Nature 442(7101):453–456CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Davis GE, Camarillo CW (1996) An α2β1 integrin-dependent pinocytic mechanism involving intracellular vacuole formation and coalescence regulates capillary lumen and tube formation in three-dimensional collagen matrix. Exp Cell Res 224(1):39–51CrossRefPubMedGoogle Scholar
  29. 29.
    Strilić B, Kučera T, Eglinger J, Hughes MR, McNagny KM, Tsukita S et al (2009) The molecular basis of vascular lumen formation in the developing mouse aorta. Dev Cell 17(4):505–515CrossRefPubMedGoogle Scholar
  30. 30.
    Ribatti D, Crivellato E (2012) “Sprouting angiogenesis”, a reappraisal. Dev Biol 372(2):157–165CrossRefPubMedGoogle Scholar
  31. 31.
    Klaus A, Birchmeier W (2008) Wnt signalling and its impact on development and cancer. Nat Rev Cancer 8(5):387–398CrossRefPubMedGoogle Scholar
  32. 32.
    Olsen JJ, Pohl S öther G, Deshmukh A, Visweswaran M, Ward NC, Arfuso F et al (2017) The role of Wnt signalling in angiogenesis. Clin Biochem Rev 38(3):131–142PubMedPubMedCentralGoogle Scholar
  33. 33.
    Yap AS, Niessen CM, Gumbiner BM (1998) The juxtamembrane region of the cadherin cytoplasmic tail supports lateral clustering, adhesive strengthening, and interaction with p120(ctn). J Cell Biol 141(3):779–789CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Zhang J, Fukuhara S, Sako K, Takenouchi T, Kitani H, Kume T et al (2011) Angiopoietin-1/Tie2 signal augments basal notch signal controlling vascular quiescence by inducing delta-like 4 expression through AKT-mediated activation of β-catenin. J Biol Chem 286(10):8055–8066CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Phng LK, Potente M, Leslie JD, Babbage J, Nyqvist D, Lobov I et al (2009) Nrarp coordinates endothelial Notch and Wnt signaling to control vessel density in angiogenesis. Dev Cell 16(1):70–82CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Geudens I, Gerhardt H (2011) Coordinating cell behaviour during blood vessel formation. Development 138(21):4569–4583CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Zarius Ferozepurwalla
    • 1
  • Jude Merzah
    • 1
    • 2
  • Lieze Thielemans
    • 1
  • Graeme Birdsey
    • 3
    Email author
  1. 1.Imperial College LondonLondonUK
  2. 2.Queen’s University BelfastBelfastUK
  3. 3.National Heart and Lung Institute, Vascular Sciences, Imperial College LondonLondonUK

Personalised recommendations