Advertisement

Developments in Heart Failure: Mechanical Unloading with LVADs, Exosomes, and MicroRNAs

  • Samuel Guymer
  • Mayooran ShanmuganathanEmail author
Chapter
Part of the Learning Materials in Biosciences book series (LMB)

Abstract

This chapter will begin by briefly establishing the global clinical burden of heart failure (HF) and limitations of current treatment regimens. The use of left ventricular assist devices (LVADs) in advanced HF will then be explored, including a discussion of the underlying principles of mechanical unloading. We will then evaluate the emerging evidence of the role that exosomes and microRNAs may have in the diagnosis and treatment of cardiovascular diseases, including myocardial infarction.

References

  1. 1.
    Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JGF, Coats AJS et al (2016) 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 37(27):2129–2200.  https://doi.org/10.1093/eurheartj/ehw128CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Inamdar AA, Inamdar AC (2016) Heart failure: diagnosis, management and utilization. J Clin Med 5(7):62.  https://doi.org/10.3390/jcm5070062CrossRefPubMedCentralGoogle Scholar
  3. 3.
    Masoudi FA, Havranek EP, Krumholz HM (2002) The burden of chronic congestive heart failure in older persons: magnitude and implications for policy and research. Heart Fail Rev 7(1):9–16.  https://doi.org/10.1023/A:1013793621248CrossRefPubMedGoogle Scholar
  4. 4.
    Heidenreich PA, Albert NM, Allen LA, Bluemke DA, Butler J, Fonarow GC et al (2013) Forecasting the impact of heart failure in the United States: a policy statement from the American Heart Association. Circ Heart Fail 6(3):606–619.  https://doi.org/10.1161/HHF.0b013e318291329aCrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Cleland JG, Daubert JC, Erdmann E, Freemantle N, Gras D, Kappenberger L et al (2005) The effect of cardiac resynchronization on morbidity and mortality in heart failure. N Engl J Med 352(15):1539–1549.  https://doi.org/10.1056/NEJMoa050496CrossRefPubMedGoogle Scholar
  6. 6.
    Zarrinkoub R, Wettermark B, Wändell P, Mejhert M, Szulkin R, Ljunggren G et al (2013) The epidemiology of heart failure, based on data for 2.1 million inhabitants in Sweden. Eur J Heart Fail 15(9):995–1002.  https://doi.org/10.1093/eurjhf/hft064CrossRefPubMedGoogle Scholar
  7. 7.
    Samak M, Fatullayev J, Sabashnikov A, Zeriouh M, Rahmanian PB, Choi YH et al (2015) Past and present of total artificial heart therapy: a success story. Med Sci Monit Basic Res 21:183–190.  https://doi.org/10.12659/MSMBR.895418CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Rose EA, Gelijns AC, Moskowitz AJ, Heitjan DF, Stevenson LW, Dembitsky W et al (2001) Long-term use of a left ventricular assist device for end-stage heart failure. N Engl J Med 345(20):1435–1443.  https://doi.org/10.1056/NEJMoa012175CrossRefPubMedGoogle Scholar
  9. 9.
    Krishnamani R, Denofrio D, Konstam MA (2010) Emerging ventricular assist devices for long-term cardiac support. Nat Rev Cardiol 7(2):71–76.  https://doi.org/10.1038/nrcardio.2009.222CrossRefPubMedGoogle Scholar
  10. 10.
    Mehra MR, Naka Y, Uriel N, Goldstein DJ, Cleveland JC, Colombo PC et al (2017) A fully magnetically levitated circulatory pump for advanced heart failure. N Engl J Med 376(5):440–450.  https://doi.org/10.1056/NEJMoa1610426CrossRefPubMedGoogle Scholar
  11. 11.
    Prinzing A, Herold U, Berkefeld A, Krane M, Lange R, Voss B (2016) Left ventricular assist devices-current state and perspectives. J Thorac Dis 8(8):E660–E666.  https://doi.org/10.21037/jtd.2016.07.13CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Simon MA, Kormos RL, Murali S, Nair P, Heffernan M, Gorcsan J et al (2005) Myocardial recovery using ventricular assist devices: prevalence, clinical characteristics and outcomes. Circulation 112(9 Suppl):I32–I36.  https://doi.org/10.1161/CIRCULATIONAHA.104.524124.CrossRefPubMedGoogle Scholar
  13. 13.
    Birks EJ, Tansley PD, Hardy J, George RS, Bowles CT, Burke M et al (2006) Left ventricular assist device and drug therapy for the reversal of heart failure. N Engl J Med 355(18):1873–1884.  https://doi.org/10.1056/NEJMoa053063CrossRefPubMedGoogle Scholar
  14. 14.
    Terracciano CM, Hardy J, Birks EJ, Khaghani A, Banner NR, Yacoub MH (2004) Clinical recovery from end-stage heart failure using left-ventricular assist device and pharmacological therapy correlates with increased sarcoplasmic reticulum calcium content but not with regression of cellular hypertrophy. Circulation 109(19):2263–2265.  https://doi.org/10.1161/01.CIR.0000129233.51320.92CrossRefPubMedGoogle Scholar
  15. 15.
    Botchway AN, Turner MA, Sheridan DJ, Flores NA, Fry CH (2003) Electrophysiological effects accompanying regression of left ventricular hypertrophy. Cardiovasc Res 60(3):510–517.  https://doi.org/10.1016/j.cardiores.2003.08.013CrossRefPubMedGoogle Scholar
  16. 16.
    Gustafsson F, Rogers JG (2017) Left ventricular assist device therapy in advanced heart failure: patient selection and outcomes. Eur J Heart Fail 19(5):595–602.  https://doi.org/10.1002/ejhf.779CrossRefPubMedGoogle Scholar
  17. 17.
    Drakos SG, Terrovitis JV, Anastasiou-Nana MI, Nanas JN (2007) Reverse remodeling during long-term mechanical unloading of the left ventricle. J Mol Cell Cardiol 43(3):231–242.  https://doi.org/10.1016/j.yjmcc.2007.05.020CrossRefPubMedGoogle Scholar
  18. 18.
    Ibrahim M, Al Masri A, Navaratnarajah M, Siedlecka U, Soppa GK, Moshkov A et al (2010) Prolonged mechanical unloading affects cardiomyocyte excitation-contraction coupling, transverse-tubule structure, and the cell surface. FASEB J 24(9):3321–3329.  https://doi.org/10.1096/fj.10-156638CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Rossing K, Gustafsson F (2018) Medical and mechanical unloading in advanced heart failure: hope for cardiac recovery? Eur J Heart Fail 20(1):175–177.  https://doi.org/10.1002/ejhf.1018CrossRefPubMedGoogle Scholar
  20. 20.
    Wever-Pinzon O, Drakos SG, Kfoury AG, Nativi JN, Gilbert EM, Everitt M et al (2013) Morbidity and mortality in heart transplant candidates supported with mechanical circulatory support: is reappraisal of the current United network for organ sharing thoracic organ allocation policy justified? Circulation 127(4):452–462.  https://doi.org/10.1161/CIRCULATIONAHA.112.100123CrossRefPubMedGoogle Scholar
  21. 21.
    Jorde UP, Kushwaha SS, Tatooles AJ, Naka Y, Bhat G, Long JW et al (2014) Results of the destination therapy post-food and drug administration approval study with a continuous flow left ventricular assist device: a prospective study using the INTERMACS registry (Interagency Registry for Mechanically Assisted Circulatory Support). J Am Coll Cardiol 63(17):1751–1757.  https://doi.org/10.1016/j.jacc.2014.01.053CrossRefPubMedGoogle Scholar
  22. 22.
    Loyaga-Rendon RY, Pamboukian SV, Tallaj JA, Acharya D, Cantor R, Starling RC et al (2014) Outcomes of patients with peripartum cardiomyopathy who received mechanical circulatory support. Data from the Interagency Registry for Mechanically Assisted Circulatory Support. Circ Hear Fail 7(2):300–309.  https://doi.org/10.1161/CIRCHEARTFAILURE.113.000721CrossRefGoogle Scholar
  23. 23.
    Iwashima Y, Yanase M, Horio T, Seguchi O, Murata Y, Fujita T et al (2012) Effect of pulsatile left ventricular assist system implantation on Doppler measurements of renal hemodynamics in patients with advanced heart failure. Artif Organs 36(4):353–358.  https://doi.org/10.1111/j.1525-1594.2011.01351.xCrossRefPubMedGoogle Scholar
  24. 24.
    John R, Pagani FD, Naka Y, Boyle A, Conte JV, Russell SD et al (2010) Post-cardiac transplant survival after support with a continuous-flow left ventricular assist device: impact of duration of left ventricular assist device support and other variables. J Thorac Cardiovasc Surg 140(1):174–181.  https://doi.org/10.1016/j.jtcvs.2010.03.037CrossRefPubMedGoogle Scholar
  25. 25.
    Mancini D, Colombo PC (2015) Left ventricular assist devices: a rapidly evolving alternative to transplant. J Am Coll Cardiol 65(23):2542–2555.  https://doi.org/10.1016/j.jacc.2015.04.039CrossRefPubMedGoogle Scholar
  26. 26.
    Heatley G, Sood P, Goldstein D, Uriel N, Cleveland J, Middlebrook D et al (2016) Clinical trial design and rationale of the Multicenter Study of MagLev Technology in Patients Undergoing Mechanical Circulatory Support Therapy with HeartMate 3 (MOMENTUM 3) investigational device exemption clinical study protocol. J Hear Lung Transplant 35(4):528–536.  https://doi.org/10.1016/j.healun.2016.01.021CrossRefGoogle Scholar
  27. 27.
    Mehra MR, Goldstein DJ, Uriel N, Cleveland JC, Yuzefpolskaya M, Salerno C et al (2018) Two-year outcomes with a magnetically levitated cardiac pump in heart failure. N Engl J Med 378(15):1386–1395.  https://doi.org/10.1056/NEJMoa1800866CrossRefPubMedGoogle Scholar
  28. 28.
    Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9(6):654–659.  https://doi.org/10.1038/ncb1596CrossRefPubMedGoogle Scholar
  29. 29.
    Kumarswamy R, Thum T (2013) Non-coding RNAs in cardiac remodeling and heart failure. Circ Res 113(6):676–689.  https://doi.org/10.1161/CIRCRESAHA.113.300226CrossRefPubMedGoogle Scholar
  30. 30.
    Shanmuganathan M, Vughs J, Noseda M, Emanueli C (2018) Exosomes: basic biology and technological advancements suggesting their potential as ischemic heart disease therapeutics. Front Physiol 9:1159.  https://doi.org/10.3389/fphys.2018.01159CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Colombo M, Moita C, van Niel G, Kowal J, Vigneron J, Benaroch P et al (2013) Analysis of ESCRT functions in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles. J Cell Sci 126(24):5553–5565.  https://doi.org/10.1242/jcs.128868CrossRefPubMedGoogle Scholar
  32. 32.
    Edgar JR, Eden ER, Futter CE (2014) Hrs- and CD63-dependent competing mechanisms make different sized endosomal intraluminal vesicles. Traffic 15(2):197–211.  https://doi.org/10.1111/tra.12139CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Trajkovic K, Hsu C, Chiantia S, Rajendran L, Wenzel D, Wieland F et al (2008) Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 319(5867):1244–1247.  https://doi.org/10.1126/science.1153124CrossRefPubMedGoogle Scholar
  34. 34.
    Han J, Lee Y, Yeom KH, Nam JW, Heo I, Rhee JK et al (2006) Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell 125(5):887–901.  https://doi.org/10.1016/j.cell.2006.03.043CrossRefPubMedGoogle Scholar
  35. 35.
    Takane K, Fujishima K, Watanabe Y, Sato A, Saito N, Tomita M et al (2010) Computational prediction and experimental validation of evolutionarily conserved microRNA target genes in bilaterian animals. BMC Genomics 11:101.  https://doi.org/10.1186/1471-2164-11-101CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Singh R, Pochampally R, Watabe K, Lu Z, Mo YY (2014) Exosome-mediated transfer of miR-10b promotes cell invasion in breast cancer. Mol Cancer 13:256.  https://doi.org/10.1186/1476-4598-13-256CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Chendrimada TP, Gregory RI, Kumaraswamy E, Norman J, Cooch N, Nishikura K et al (2005) TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature 436(7051):740–744.  https://doi.org/10.1038/nature03868CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Kim H, Yun N, Mun D, Kang JY, Lee SH, Park H et al (2018) Cardiac-specific delivery by cardiac tissue-targeting peptide-expressing exosomes. Biochem Biophys Res Commun 499(4):803–808.  https://doi.org/10.1016/j.bbrc.2018.03.227CrossRefPubMedGoogle Scholar
  39. 39.
    Mincheva-Nilsson L, Baranov V, Nagaeva O, Dehlin E (2016) Isolation and characterization of exosomes from cultures of tissue explants and cell lines. Curr Protoc Immunol 115:14.42.1–14.42.21.  https://doi.org/10.1002/cpim.17CrossRefGoogle Scholar
  40. 40.
    Barile L, Moccetti T, Marbán E, Vassalli G (2017) Roles of exosomes in cardioprotection. Eur Heart J 38(18):1372–1379.  https://doi.org/10.1093/eurheartj/ehw304CrossRefPubMedGoogle Scholar
  41. 41.
    Eulalio A, Mano M, Dal Ferro M, Zentilin L, Sinagra G, Zacchigna S et al (2012) Functional screening identifies miRNAs inducing cardiac regeneration. Nature 492(7429):376–381.  https://doi.org/10.1038/nature11739CrossRefPubMedGoogle Scholar
  42. 42.
    Khan M, Nickoloff E, Abramova T, Johnson J, Verma SK, Krishnamurthy P et al (2015) Embryonic stem cell-derived exosomes promote endogenous repair mechanisms and enhance cardiac function following myocardial infarction. Circ Res 117(1):52–64.  https://doi.org/10.1161/CIRCRESAHA.117.305990CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Garcia NA, Moncayo-Arlandi J, Sepulveda P, Diez-Juan A (2016) Cardiomyocyte exosomes regulate glycolytic flux in endothelium by direct transfer of GLUT transporters and glycolytic enzymes. Cardiovasc Res 109(3):397–408.  https://doi.org/10.1093/cvr/cvv260CrossRefPubMedGoogle Scholar
  44. 44.
    Wang X, Huang W, Liu G, Cai W, Millard RW, Wang Y et al (2014) Cardiomyocytes mediate anti-angiogenesis in type 2 diabetic rats through the exosomal transfer of miR-320 into endothelial cells. J Mol Cell Cardiol 74:139–150.  https://doi.org/10.1016/j.yjmcc.2014.05.001CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJ (2011) Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol 29(4):341–345.  https://doi.org/10.1038/nbt.1807CrossRefPubMedGoogle Scholar
  46. 46.
    Kishore R, Khan M (2016) More than tiny sacks: stem cell exosomes as cell-free modality for cardiac repair. Circ Res 118(2):330–343.  https://doi.org/10.1161/CIRCRESAHA.115.307654CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Marbán E (2018) The secret life of exosomes: what bees can teach us about next-generation therapeutics. J Am Coll Cardiol 71(2):193–200.  https://doi.org/10.1016/j.jacc.2017.11.013CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Stremersch S, Vandenbroucke RE, Van Wonterghem E, Hendrix A, De Smedt SC, Raemdonck K (2016) Comparing exosome-like vesicles with liposomes for the functional cellular delivery of small RNAs. J Control Release 232:51–61.  https://doi.org/10.1016/j.jconrel.2016.04.005CrossRefPubMedGoogle Scholar
  49. 49.
    Yoshida K, Burton GF, McKinney JS, Young H, Ellis EF (1992) Brain and tissue distribution of polyethylene glycol-conjugated superoxide dismutase in rats. Stroke 23(6):865–869.  https://doi.org/10.1161/01.STR.23.6.865CrossRefPubMedGoogle Scholar
  50. 50.
    Babuin L, Jaffe AS (2005) Troponin: the biomarker of choice for the detection of cardiac injury. CMAJ 173(10):1191–1202.  https://doi.org/10.1503/cmaj.050141CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Stirrup J, Velasco A, Hage FG, Reyes E (2017) Comparison of ESC and ACC/AHA guidelines for myocardial revascularization. J Nucl Cardiol 24(3):1046–1053.  https://doi.org/10.1007/s12350-017-0811-5CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Endzelinš E, Berger A, Melne V, Bajo-Santos C, Sobolevska K, Abols A et al (2017) Detection of circulating miRNAs: comparative analysis of extracellular vesicle-incorporated miRNAs and cell-free miRNAs in whole plasma of prostate cancer patients. BMC Cancer 17(1):730.  https://doi.org/10.1186/s12885-017-3737-zCrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    D’Alessandra Y, Devanna P, Limana F, Straino S, Di Carlo A, Brambilla PG et al (2010) Circulating microRNAs are new and sensitive biomarkers of myocardial infarction. Eur Heart J 31(22):2765–2773.  https://doi.org/10.1093/eurheartj/ehq167CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Kuwabara Y, Ono K, Horie T, Nishi H, Nagao K, Kinoshita M et al (2011) Increased microRNA-1 and microRNA-133a levels in serum of patients with cardiovascular disease indicate myocardial damage. Circ Cardiovasc Genet 4(4):446–454.  https://doi.org/10.1161/CIRCGENETICS.110.958975CrossRefPubMedGoogle Scholar
  55. 55.
    Rodriguez JA, Orbe J, Saenz-Pipaon G, Abizanda G, Gebara N, Radulescu F et al (2018) Selective increase of cardiomyocyte derived extracellular vesicles after experimental myocardial infarction and functional effects on the endothelium. Thromb Res 170:1–9.  https://doi.org/10.1016/j.thromres.2018.07.030CrossRefPubMedGoogle Scholar
  56. 56.
    Loyer X, Zlatanova I, Devue C, Yin M, Howangyin KY, Klaihmon P et al (2018) Intra-cardiac release of extracellular vesicles shapes inflammation following myocardial infarction. Circ Res 123(1):100–106.  https://doi.org/10.1161/CIRCRESAHA.117.311326CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.St George’s, University of LondonLondonUK
  2. 2.National Heart and Lung Institute, Myocardial FunctionImperial College LondonLondonUK
  3. 3.Cardiovascular Medicine, University of OxfordOxfordUK

Personalised recommendations