Advertisement

Substrate Remodeling in Heart Failure

  • Angeliki Iakovou
  • Samuel Guymer
  • Rasheda ChowdhuryEmail author
Chapter
Part of the Learning Materials in Biosciences book series (LMB)

Abstract

With the fundamentals of heart failure already discussed, this chapter will explain three integral facets of the remodeling process: electrophysiological, fibrotic, and mitochondrial. Instigated by interacting networks of neurohormonal and chemical signaling, these systems collectively contribute to much of the longitudinal functional decline observed, as well as significantly heightening the risk of sudden cardiac death. In addition to expanding upon their alteration in heart failure, this chapter will provide a brief overview of the fundamental pathway that underlies angiotensin-II-mediated fibrosis. Finally, novel pharmacological agents to combat these deleterious changes will be evaluated.

References

  1. 1.
    Pons F, Lupón J, Urrutia A, González B, Crespo E, Díez C et al (2010) Mortality and cause of death in patients with heart failure: findings at a specialist multidisciplinary heart failure unit. Rev Española Cardiol (English ed.) 63(3):303–331CrossRefGoogle Scholar
  2. 2.
    Pinto JMB, Boyden PA (1999) Electrical remodeling in ischemia and infarction. Cardiovasc Res 42:284CrossRefPubMedGoogle Scholar
  3. 3.
    Nattel S, Maguy A, Le Bouter S, Yeh Y-H (2007) Arrhythmogenic ion-channel remodeling in the heart: heart failure, myocardial infarction, and atrial fibrillation. Physiol Rev 87:425CrossRefPubMedGoogle Scholar
  4. 4.
    Zicha S, Xiao L, Stafford S, Cha TJ, Han W, Varro A et al (2004) Transmural expression of transient outward potassium current subunits in normal and failing canine and human hearts. J Physiol 561(3):735–748CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Klabunde RE (2012) Cardiovascular physiology concepts, 2nd edn. Lippincott Williams & Wilkins, PhiladelphiaGoogle Scholar
  6. 6.
    de Brito Santos PE, Barcellos LC, Mill JG, Masuda MO (1995) Ventricular action potential and L-type calcium channel in infarct-induced hypertrophy in rats. J Cardiovasc Electrophysiol 6(11):1004–1014CrossRefGoogle Scholar
  7. 7.
    Schmidt U, Hajjar RJ, Helm PA, Kim CS, Doye AA, Gwathmey JK (1998) Contribution of abnormal sarcoplasmic reticulum ATPase activity to systolic and diastolic dysfunction in human heart failure. J Mol Cell Cardiol 30:1929CrossRefPubMedGoogle Scholar
  8. 8.
    Del Monte F, Harding SE, Schmidt U, Matsui T, Bin KZ, Dec GW et al (1999) Restoration of contractile function in isolated cardiomyocytes from failing human hearts by gene transfer of SERCA2a. Circulation 100(23):2308–2311CrossRefPubMedCentralGoogle Scholar
  9. 9.
    Li J, Hu SJ, Sun J, Zhu ZH, Zheng X, Wang GZ et al (2005) Construction of phospholamban antisense RNA recombinant adeno-associated virus vector and its effects in rat cardiomyocytes. Acta Pharmacol Sin 26(1):51–55CrossRefPubMedGoogle Scholar
  10. 10.
    Pogwizd SM, Qi M, Yuan W, Samarel AM, Bers DM (1999) Upregulation of Na+/Ca2+exchanger expression and-function in an arrhythmogenic rabbit model of heart failure. Circ Res 85:1009CrossRefPubMedGoogle Scholar
  11. 11.
    Wehrens XHT, Lehnart SE, Huang F, Vest JA, Reiken SR, Mohler PJ et al (2003) FKBP12.6 deficiency and defective calcium release channel (ryanodine receptor) function linked to exercise-induced sudden cardiac death. Cell 113:829CrossRefPubMedGoogle Scholar
  12. 12.
    Schwinger RHG, Bundgaard H, Müller-Ehmsen J, Kjeldsen K (2003) The Na, K-ATPase in the failing human heart. Cardiovasc Res 57:913CrossRefPubMedGoogle Scholar
  13. 13.
    Stillitano F, Lonardo G, Zicha S, Varro A, Cerbai E, Mugelli A et al (2008) Molecular basis of funny current (If) in normal and failing human heart. J Mol Cell Cardiol 45:289PubMedGoogle Scholar
  14. 14.
    Hoppe UC, Jansen E, Südkamp M, Beuckelmann DJ (1998) Hyperpolarization-activated inward current in ventricular myocytes from normal and failing human hearts. Circulation 97:55CrossRefPubMedGoogle Scholar
  15. 15.
    Kurata Y, Hisatome I, Matsuda H, Shibamoto T (2005) Dynamical mechanisms of pacemaker generation in IK1- downregulated human ventricular myocytes: insights from bifurcation analyses of a mathematical model. Biophys J 89(4):2865–2887CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Tomaselli GF, Marbán E (1999) Electrophysiological remodeling in hypertrophy and heart failure. Cardiovasc Res 42:270CrossRefPubMedGoogle Scholar
  17. 17.
    Fan D, Takawale A, Lee J, Kassiri Z (2012) Cardiac fibroblasts, fibrosis and extracellular matrix remodeling in heart disease. Fibrogenesis Tissue Repair 5:15CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Shoulders MD, Raines RT (2009) Collagen structure and stability. Annu Rev Biochem 78:929CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Pauschinger M, Doerner A, Remppis A, Tannhäuser R, Kühl U, Schultheiss HP (1998) Differential myocardial abundance of collagen type I and type III mRNA in dilated cardiomyopathy: effects of myocardial inflammation. Cardiovasc Res 37:123CrossRefPubMedGoogle Scholar
  20. 20.
    Mouw JK, Ou G, Weaver VM (2014) Extracellular matrix assembly: a multiscale deconstruction. Nat Rev Mol Cell Biol 15:771CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Baum J, Duffy HS (2011) Fibroblasts and myofibroblasts: what are we talking about? J Cardiovasc Pharmacol 57:376CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Nagase H, Visse R, Murphy G (2006) Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res 69:562CrossRefPubMedGoogle Scholar
  23. 23.
    Yue L, Xie J, Nattel S (2011) Molecular determinants of cardiac fibroblast electrical function and therapeutic implications for atrial fibrillation. Cardiovasc Res 89:744CrossRefPubMedGoogle Scholar
  24. 24.
    Rohr S (2012) Arrhythmogenic implications of fibroblast-myocyte interactions. Circ Arrhythmia Electrophysiol 5:442CrossRefGoogle Scholar
  25. 25.
    Nguyen TP, Qu Z, Weiss JN (2014) Cardiac fibrosis and arrhythmogenesis: the road to repair is paved with perils. J Mol Cell Cardiol 70:83CrossRefPubMedGoogle Scholar
  26. 26.
    Meng XM, Nikolic-Paterson DJ, Lan HY (2016) TGF-β: the master regulator of fibrosis. Nat Rev Nephrol 12:325–338CrossRefPubMedGoogle Scholar
  27. 27.
    Chemaly ER, Kang S, Zhang S, Mccollum L, Chen J, Bénard L et al (2013) Differential patterns of replacement and reactive fibrosis in pressure and volume overload are related to the propensity for ischaemia and involve resistin. J Physiol 591(21):5337–5355CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Tojo M, Hamashima Y, Hanyu A, Kajimoto T, Saitoh M, Miyazono K et al (2005) The ALK-5 inhibitor A-83-01 inhibits Smad signaling and epithelial-to-mesenchymal transition by transforming growth factor-β. Cancer Sci 96:791CrossRefPubMedGoogle Scholar
  29. 29.
    Koh RY, Lim CL, Uhal BD, Abdullah M, Vidyadaran S, Ho CC et al (2015) Inhibition of transforming growth factor-β via the activin receptor-like kinase-5 inhibitor attenuates pulmonary fibrosis. Mol Med Rep 11:3808CrossRefPubMedGoogle Scholar
  30. 30.
    Nagaraj NS, Datta PK (2010) Targeting the transforming growth factor-β signaling pathway in human cancer. Expert Opin Investig Drugs 19:77CrossRefPubMedGoogle Scholar
  31. 31.
    Sack MN (2006) Mitochondrial depolarization and the role of uncoupling proteins in ischemia tolerance. Cardiovasc Res 72:210CrossRefPubMedGoogle Scholar
  32. 32.
    Akar FG, Aon MA, Tomaselli GF, O’Rourke B (2005) The mitochondrial origin of postischemic arrhythmias. J Clin Invest 115:3527CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Lyon AR, Joudrey PJ, Jin D, Nass RD, Aon MA, O’Rourke B et al (2010) Optical imaging of mitochondrial function uncovers actively propagating waves of mitochondrial membrane potential collapse across intact heart. J Mol Cell Cardiol 49:565CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Bhar-Amato J, Davies W, Agarwal S (2017) Ventricular arrhythmia after acute myocardial infarction: ‘the perfect storm’. Arrhythmia Electrophysiol Rev 6:134CrossRefGoogle Scholar
  35. 35.
    Karaa A, Haas R, Goldstein A, Vockley J, Weaver WD, Cohen BH (2018) Randomized dose-escalation trial of elamipretide in adults with primary mitochondrial myopathy. Neurology 90:e1212CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Kloner RA, Hale SL, Dai W, Gorman RC, Shuto T, Koomalsingh KJ et al (2012) Reduction of ischemia/reperfusion injury with bendavia, a mitochondria-targeting cytoprotective peptide. J Am Heart Assoc 1:e001644CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Szeto HH (2014) First-in-class cardiolipin-protective compound as a therapeutic agent to restore mitochondrial bioenergetics. Br J Pharmacol 171:2029CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Gibson CM, Giugliano RP, Kloner RA, Bode C, Tendera M, Jánosi A et al (2016) EMBRACE STEMI study: a phase 2a trial to evaluate the safety, tolerability, and efficacy of intravenous MTP-131 on reperfusion injury in patients undergoing primary percutaneous coronary intervention. Eur Heart J 37:1296CrossRefPubMedGoogle Scholar
  39. 39.
    Daubert MA, Yow E, Dunn G, Marchev S, Barnhart H, Douglas PS et al (2017) Novel mitochondria-targeting peptide in heart failure treatment: a randomized, placebo-controlled trial of Elamipretide. Circ Hear Fail 10:e004389Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Angeliki Iakovou
    • 1
  • Samuel Guymer
    • 2
  • Rasheda Chowdhury
    • 3
    Email author
  1. 1.Queen Mary University of LondonLondonUK
  2. 2.Imperial College LondonLondonUK
  3. 3.National Heart and Lung Institute, Myocardial Function, Imperial College LondonLondonUK

Personalised recommendations