Mast Cells in Blood-Brain Barrier Alterations and Neurodegenerative Diseases

  • Domenico RibattiEmail author


The blood-brain barrier (BBB) is found in the brain all vertebrates and the presence of a barrier only in the invertebrates capable of complex central nervous system (CNS) functions might indicate that a barrier is needed when the level of integrative activity in the nervous tissues reaches a critical level.


  1. Armulik A, Genove G, Mae M et al (2010) Pericytes regulate the blood-brain barrier. Nature 468:557–561CrossRefGoogle Scholar
  2. Bomprezzi R, Ringnér M, Kim S et al (2003) Gene expression profile in multiple sclerosis patients and healthy controls: identifying pathways relevant to disease. Hum Mol Gen 12:2191–2199CrossRefGoogle Scholar
  3. Brenner T, Soffer D, Shalit M et al (1994) Mast cells in experimental allergic encephalomyelitis: characterization, distribution in the CNS and in vitro activation by myelin basic protein and neuropeptides. J Neurol Sci 122:210–213CrossRefGoogle Scholar
  4. Brown MA, Hatfield JK (2012) Mast Cells are important modifiers of autoimmune disease: with so much evidence, why is there still controversy? Front Immunol 3:147CrossRefGoogle Scholar
  5. Bulanova E, Bulfone-Paus S (2010) P2 receptor-mediated signaling in mast cell biology. Purinergic Signal 6:3–17CrossRefGoogle Scholar
  6. Bunnett NW (2006) Protease-activated receptors: how proteases signal to cells to cause inflammation and pain. Sem Thromb Hemost 32:39–48CrossRefGoogle Scholar
  7. Daneman R, Zhou L, Kebede AA et al (2010) Pericytes are required for blood-brain barrier integrity during embryogenesis. Nature 468:562–566CrossRefGoogle Scholar
  8. Dietsch GN, Hinrichs DJ (1989) The role of mast cells in the elicitation of experimental allergic encephalomyelitis. J Immunol 142:1476–1481PubMedGoogle Scholar
  9. Dietsch GN, Hinrichs DJ (1991) Mast cell proteases liberate stable encephalitogenic fragments from intact myelin. Cell Immunol 135:541–548CrossRefGoogle Scholar
  10. Dimitriadou V, Pang X, Theoharides TC (2000) Hydroxyzine inhibits experimental allergic encephalomyelitis (EAE) and associated brain mast cell activation. Int J Immunopharmacol 22:673–684CrossRefGoogle Scholar
  11. Dong Y, Benveniste EN (2001) Immune function of astrocytes. Glia 36:180–190CrossRefGoogle Scholar
  12. Graumann U, Reynolds R, Steck AJ et al (2003) Molecular changes in normal appearing white matter in multiple sclerosis are characteristic of neuroprotective mechanisms against hypoxic insult. Brain Pathol 13:554–573CrossRefGoogle Scholar
  13. Greenberg DA, Jin K (2005) From angiogenesis to neuropathology. Nature 438:954–959CrossRefGoogle Scholar
  14. Gregory GD, Robbie-Ryan M, Secor VH et al (2005) Mast cells are required for optimal autoreactive T cell responses in a murine model of multiple sclerosis. Eur J Immunol 35:3478–3486CrossRefGoogle Scholar
  15. Gregory GD, Raju SS, Winandry S et al (2006) Mast cell IL-4 expression is regulated by ikaros and influences encephalitogenic TH 1 responses in mice. J Clin Invest 116:1327–1336CrossRefGoogle Scholar
  16. Holley JE, Newcombe J, Whatmore JL et al (2010) Increased blood vessel density and endothelial cell proliferation in multiple sclerosis cerebral white matter. Neurosci Lett 470:65–70CrossRefGoogle Scholar
  17. Hösli L, Hösli E, Schneider U et al (1984) Evidence for the existence of histamine H1- and H2 receptors on astrocytes of cultured rat central nervous system. Neurosci Lett 48:287–291CrossRefGoogle Scholar
  18. Hudson CA, Christophi GP, Gruber RC et al (2008) Induction of IL-33 expression and activity in central nervous system glia. J Leukoc Biol 84:631–643CrossRefGoogle Scholar
  19. Johnson D, Seeldrayers PA, Weiner HL (1988) The role of mast cells in demyelination. 1. Myelin proteins are degraded by mast cell proteases and myelin basic protein and P2 can stimulate mast cell degranulation. Brain Res 444:195–198CrossRefGoogle Scholar
  20. Kempuraj D, Tagen M, Iliopoulou BP et al (2008) Luteolin inhibits myelin basic protein-induced human mast cell activation and mast cell-dependent stimulation of Jurkat T cells. Br J Pharmacol 155:1076–1084CrossRefGoogle Scholar
  21. Kim DY, Jeoung D, Ro JY (2010) Signaling pathways in the activation of mast cells cocultured with astrocytes and colocalization of both cells in experimental allergic encephalomyelitis. J Immunol 185:273–283CrossRefGoogle Scholar
  22. Kim DY, Hong GU, Ro JY (2011) Signal pathways in astrocytes activated by cross-talk between of astrocytes and mast cells through CD40-CD40L. J Neuroinflammation 8: 25CrossRefGoogle Scholar
  23. Lindsberg PJ, Strbian D, Karjalainen-Lindsberg ML (2010) Mast cells as early responders in the regulation of acute blood-brain barrier changes after cerebral ischemia and hemorrhage. J Cereb Blood Flow Metab 30:689–702CrossRefGoogle Scholar
  24. Lock C, Hermans G, Pedotti R et al (2002) Gene-microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis. Nat Med 8:500–508CrossRefGoogle Scholar
  25. Malamud V, Vaaknin A, Abramsky O et al (2003) Tryptase activates peripheral blood mononuclear cells causing the synthesis and release of TNF-alpha, IL-6 and IL-1 beta: possible relevance to multiple sclerosis. J Neuroimmunol 138:115–122CrossRefGoogle Scholar
  26. Mattila OS, Strbian D, Saksi J et al (2011) Cerebral mast cells mediate blood-brain barrier disruption in acute experimental ischemic stroke through perivascular gelatinase activation. Stroke 42:3600–3605CrossRefGoogle Scholar
  27. Neuman J (1890) Ueber das Vorkommen der Sogneannten “Mastzellen” bei Pathologischen Veraenderungen des Gehirns. Virchows Arch Pathol Anat Physiol 122:378–381CrossRefGoogle Scholar
  28. Proescholdt MA, Jacobson S, Tresser N et al (2002) Vascular endothelial growth factor is expressed in multiple sclerosis plaques and can induce inflammatory lesions in experimental allergic encephalomyelitis rats. J Neuropathol Exp Neurol 61:914–925CrossRefGoogle Scholar
  29. Reese TS, Karnovsky MJ (1967) Fine structural localization of a blood-brain barrier to exogenous peroxidase. J Cell Biol 34:207–217CrossRefGoogle Scholar
  30. Ribatti D, Iaffaldano P, Marinaccio C et al (2016) First evidence of in vivo pro-angiogenic activity of cerebrospinal fluid samples from multiple sclerosis patients. Clin Exp Med 16:103–107CrossRefGoogle Scholar
  31. Risau W, Dingler A, Albrecht U et al (1992) Blood-brain barrier pericytes are the main source of gamma-glutamyltranspeptidase activity in brain capillaries. J Neurochem 58:667–672CrossRefGoogle Scholar
  32. Rodewald HR, Feyerabend TB (2012) widesperad immunological functions of mast cells: fact or fiction? Immunity 37:13–24CrossRefGoogle Scholar
  33. Rouleau A, Dimitriadou V, Trung Tuong MD et al (1997) Mast cell specific proteases in rat brain: changes in rats with experimental allergic encephalomyelitis. J Neural Transm 104:399–417CrossRefGoogle Scholar
  34. Rozniecki JJ, Hauser SL, Stein M et al (1995) Elevated mast cell tryptase in cerebrospinal fluid of multiple sclerosis patients. Ann Neurol 37:63–66CrossRefGoogle Scholar
  35. Sayed BA, Christy A, Quirion MR et al (2008) The master switch: the role of mast cells in autoimmunity and tolerance. Annu Rev Immunol 26:705–739CrossRefGoogle Scholar
  36. Sayed BA, Christy AL, Walker ME et al (2010) Meningeal mast cells affect early t cell central nervous system infiltration and blood-brain barrier integrity through TNF: a role for neutrophil recruitment? J Immunol 184:6891–6900CrossRefGoogle Scholar
  37. Sayed BA, Walker ME, Brown MA (2011) Cutting edge: mast cells regulate disease severity in a relapsing-remitting model of multiple sclerosis. J Immunol 186:3294–3298CrossRefGoogle Scholar
  38. Secor VH, Secor WE, Gutekunst CA et al (2000) Mast cells are essential for early onset and severe disease in a murine model of multiple sclerosis. J Exp Med 191:813–822CrossRefGoogle Scholar
  39. Sospedra M, Martin R (2005) Immunology of multiple sclerosis. Annu Rev Immunol 23:683–747CrossRefGoogle Scholar
  40. Steinman L, Zamvil SS (2005) Virtues and pitfalls of EAE for the development of therapies for multiple sclerosis. Trends Immunol 26:565–571CrossRefGoogle Scholar
  41. Strbian D, Karjalainen-Lindsberg ML, Tatlisumak T et al (2006) Cerebral mast cells regulate early ischemic brain swelling and neutrophil accumulation. J Cereb Blood Flow Metab 26:605–612CrossRefGoogle Scholar
  42. Strbian D, Tatlisumak T, Ramadan UA et al (2007) Mast cell blocking reduces brain edema and hematoma volume and improves outcome after experimental intracerebral hemorrhage. J Cereb Blood Flow Metab 27:795–802CrossRefGoogle Scholar
  43. Strbian D, Kovanen PT, Karjalainen-Lindsberg ML et al (2009) An emerging role of mast cells in cerebral ischemia and hemorrhage. Ann Med 41:438–450CrossRefGoogle Scholar
  44. Tanzola MB, Robbie-Ryan M, Gutekunst CA et al (2003) Mast cells exert effects outside the central nervous system to influence experimental allergic encephalomyelitis disease course. J Immunol 171:4385–4391CrossRefGoogle Scholar
  45. Tham E, Gielen AW, Khademi M et al (2006) Decreased expression of VEGF-A in rat experimental autoimmune encephalomyelitis and in cerebrospinal fluid mononuclear cells from patients with multiple sclerosis. Scand J Immunol 64:609–622CrossRefGoogle Scholar
  46. Theoharides TC, Donelan J, Kandere-Grzybowska K et al (2005) The role of mast cells in migraine pathophysiology. Brain Res Brain Res Rev 49:65–76CrossRefGoogle Scholar
  47. Wolburg H, Neuhaus J, Kniesel U et al (1994) Modulation of tight junction structure in blood-brain barrier endothelial cells. Effects of tissue culture, second messengers and cocultured astrocytes. J Cell Sci 107:1347–1357PubMedGoogle Scholar
  48. Zlokovic BV (2008) The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron 57:178–201CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Biomedical Sciences, Neurosciences and Sensory OrgansUniversity of BariBariItaly

Personalised recommendations