Mast Cells in Primary Systemic Vasculitides

  • Domenico RibattiEmail author


Vasculitides are characterized by inflammation and necrosis of blood vessels leading to vessel occlusion and ischemic damages of tissues. The final result is myointimal proliferation, fibrosis and thrombus formation leading to stenosis or occlusion of the vascular lumen, and finally to vascular ischemia. Moreover, in these diseases the hypoxic environment subsequent to stenosis or occlusion of the vascular lumen is a potent signal for the generation of new blood vessels. Endothelial cell diversity has crucial implications for vascular diseases’ development. Systemic vasculitides target distinct segments and branches of the vascular tree as well as selective vascular beds, and thrombotic or haemorrhagic conditions recognize specific vascular beds as the sites of disease occurrence. Potential implications for the pathogenesis of vascular metabolic diseases like atherogenesis are also strong.


  1. Battezzati M (1951) Sur la Présence des Mastzellen Dans la Paroi des Artères et Dans la Moelle Osseuse Dans les Thromboangéites. Presse Méd 59:1628Google Scholar
  2. Cañete JD, Celis R, Noordenbos T et al (2009) Distinct synovial immunopathology in Behçet disease and psoriatic arthritis. Arthritis Res Ther 11:R17CrossRefGoogle Scholar
  3. Chacko JG, Chacko JA, Salter MW (2015) Review of Giant cell arteritis. Saudi J Ophthalmol 29:48–52CrossRefGoogle Scholar
  4. Chatterjee S, Flamm SD, Tan CD et al (2014) Clinical diagnosis and management of large vessel vasculitis: giant cell arteritis. Curr Cardiol Rep 16:499Google Scholar
  5. Chi L, Li Y, Stehno-Bittel L et al (2001) Interleukin-6 production by endothelial cells via stimulation of protease-activated receptors is amplified by endotoxin and tumor necrosis factor-α. J Interferon Cytokine Res 21:231–240CrossRefGoogle Scholar
  6. Dammacco F, Ribatti D, Vacca A (eds) (2016) Systemic vasculitides: current status and perspectives. Springer, BerlinGoogle Scholar
  7. Desbois A, Cacoub P, Leroyer A et al (2017) The critical role of interleukin-33 in promoting angiogenesis and regulates inflammation through mast cells in Takayasu arteritis. Paper presented at: American College of Rheumatology Annual MeetingGoogle Scholar
  8. Ebato T, Ogata S, Ogihara Y et al (2017) The clinical utility and safety of a new strategy for the treatment of refractory Kawasaki disease. J Pediatr 191:140–144CrossRefGoogle Scholar
  9. Fredi M, Lazzaroni MG, Tani C et al (2015) Systemic vasculitis and pregnancy: a multicenter study on maternal and neonatal outcome of 65 prospectively followed pregnancies. Autoimmun Rev 14:686–691CrossRefGoogle Scholar
  10. Freeman AF, Crawford SE, Cornwall ML et al (2005) Angiogenesis in fatal acute Kawasaki disease coronary artery and myocardium. Pediatr Cardiol 26:578–584CrossRefGoogle Scholar
  11. Fujiwara H, Hamashima Y (1978) Pathology of the heart in Kawasaki disease. Pediatrics 61:100–107PubMedGoogle Scholar
  12. Fukunaga M (2005) Juvenile temporal arteritis associated with Kimura’s disease. Case report. APMIS 113:379–384CrossRefGoogle Scholar
  13. Gan PY, Summers SA, Ooi JD et al (2012) Mast cells contribute to peripheral tolerance and attenuate autoimmune vasculitis. J Am Soc Nephrol 23:1955–1966CrossRefGoogle Scholar
  14. Gan PY, Osullivan KM, Ooi JD et al (2015) Mast cell stabilization ameliorates autoimmune anti-myeloperoxidase glomerulonephritis. J Am Soc Nephrol 27:1321–1333CrossRefGoogle Scholar
  15. Gardner-Medwin JM, Dolezalova P, Cummins C et al (2002) Incidence of Henoch-Schonlein Purpura, Kawasaki disease, and rare vasculitides in children of different ethnic origins. Lancet 360:1197–1202CrossRefGoogle Scholar
  16. Gatto M, Iaccarino L, Canova M et al (2012) Pregnancy and vasculitis: a systematic review of the literature. Autoimmun Rev 11:A447–A459CrossRefGoogle Scholar
  17. Gonzalez-Gay MA, Pina T (2015) Giant cell arteritis and polymyalgia rheumatica: an update. Curr Rheumatol Rep 17:6CrossRefGoogle Scholar
  18. Guida A, Tufano A, Perna P et al (2014) The thromboembolic risk in giant cell arteritis: a critical review of the literature. Int J Rheumatol 2014:806402CrossRefGoogle Scholar
  19. Hoyer BF, Mumtaz IM, Loddenkemper K et al (2012) Takayasu arteritis is characterised by disturbances of B cell homeostasis and responds to B cell depletion therapy with rituximab. Ann Rheum Dis 71:75–79CrossRefGoogle Scholar
  20. Hunder GG (1997) Giant cell arteritis and polymyalgia rheumatica. Med Clin North Am 81:195–219CrossRefGoogle Scholar
  21. Jehle AB, Li Y, Stechschulte AC et al (2000) Endotoxin and mast cell granule proteases synergistically activate human coronary artery endothelial cells to generate interleukin-6 and interleukin-8. J Interferon Cytokine Res 20:361–368CrossRefGoogle Scholar
  22. Jennette JC, Falk RJ, Bacon PA et al (2013) Revised international Chapel Hill consensus conference nomenclature of vasculitides. Arthritis Rheum 65:1–11CrossRefGoogle Scholar
  23. Kawasaki T, Kosaki F, Okawa S et al (1974) A new infantile acute febrile mucocutaneous lymph node syndrome (MLNS) prevailing in Japan. Pediatrics 54:271–276PubMedGoogle Scholar
  24. Leskinen M, Heikkila H, Speer M et al (2006) Mast cell chymase induces smooth muscle cell apoptosis by disrupting NF-Κb-mediated survival signaling. Exp Cell Res 312:1289–1298CrossRefGoogle Scholar
  25. Li Y, Stechschulte AC, Smith DD et al (1997) Mast cell granules potentiate endotoxin-induced interleukin-6 production by endothelial cells. J Leukoc Biol 62:210–216CrossRefGoogle Scholar
  26. Mandal R, Brooks EG, Corliss RF (2015) Eosinophilic coronary periarteritis with arterial dissection: the mast cell hypothesis. J Forensic Sci 60:1088–1092CrossRefGoogle Scholar
  27. Maruotti N, Cantatore FP, Nico B et al (2008) Angiogenesis in vasculitides. Clin Exp Rheumatol 26:476–483PubMedGoogle Scholar
  28. Mayranpaa MI, Trosien JA, Nikkari ST et al (2008) Mast cells associate with T-cells and neointimal microvessels in giant cell arteritis. Clin Exp Rheumatol 26(3 Suppl 49):S63–S66PubMedGoogle Scholar
  29. Pettersson T, Hjelmman G (1964) The effect of experimental venous thrombosis on the mast cells and fibrocytes in the vascular wall of the rabbit. Acta Med Scand 175(SUPPL 412):265Google Scholar
  30. Pomerance A (1958) Peri-arterial mast cells in coronary atheroma and thrombosis. J Pathol Bacteriol 76:55–70CrossRefGoogle Scholar
  31. Ribatti D (2016) Mast cells as therapeutic target in cancer. Eur J Pharmacol 778:152–157CrossRefGoogle Scholar
  32. Saadoun D, Garrido M, Comarmond C et al (2015) Th1 and Th17 cytokines drive inflammation in Takayasu arteritis. Arthritis Rheumatol 67:1353–1360CrossRefGoogle Scholar
  33. Salvarani C, Cantini F, Hunder GG (2008) Polymyalgia rheumatica and giant-cell arteritis. Lancet 372:234–245CrossRefGoogle Scholar
  34. Soter NA, Mihm MC Jr, Gigli I et al (1976) Two distinct cellular patterns in cutaneous necrotizing angiitis. J Invest Dermatol 66:344–350CrossRefGoogle Scholar
  35. Theoharides TC, Alysandratos KD, Angelidou A et al (2012) Mast cells and inflammation. Biochim Biophys Acta 1822(1):21–33CrossRefGoogle Scholar
  36. Vinen CS, Turner DR, Oliveira DB (2004) A central role for the mast cell in early phase vasculitis in the Brown Norway Rat model of vasculitis: a histological study. Int J Exp Pathol 85:165–174CrossRefGoogle Scholar
  37. Weyand CM, Goronzy JJ (2014) Clinical practice. Giant-cell arteritis and polymyalgia rheumatica. N Engl J Med 371:50–57CrossRefGoogle Scholar
  38. Weyand CM, Fulbright JW, Hunder GG et al (2000) Treatment of giant cell arteritis: interleukin-6 as a biologic marker of disease activity. Arthritis Rheum 43:1041–1048CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Biomedical Sciences, Neurosciences and Sensory OrgansUniversity of BariBariItaly

Personalised recommendations