Mast Cells in Arteriogenesis

  • Domenico RibattiEmail author


Arteriogenesis is defined as the growth of functional collateral arteries from pre-existing arterio-arteriolar anastomoses. It is induced as a consequence of stenosis or occlusion of a major artery.


  1. Bradley JR (2008) TNF-mediated inflammatory disease. J Pathol 214:149–160CrossRefGoogle Scholar
  2. Buschmann I, Pries A, Styp-Rekowska B et al (2010) Pulsatile shear and Gja5 modulate arterial identity and remodeling events during flow-driven arteriogenesis. Development 137:2187–2196CrossRefGoogle Scholar
  3. Cai W-J, Vosschulte R, Afsah-Hedjri A et al (2000) Altered balance between extracellular proteolysis and antiproteolysis is associated with adaptive coronary arteriogenesis. J Mol Cell Cardiol 32:997–1011CrossRefGoogle Scholar
  4. Cao R, Bråkenhielm E, Pawliuk R et al (2003) Angiogenic synergism, vascular stability and improvement of hind-limb ischemia by a combination of PDGF-BB and FGF-2. Nat Med 9:604–613CrossRefGoogle Scholar
  5. Chen Z, Rubin J, Tzima E (2010) Role of PECAM-1 in arteriogenesis and specification of preexisting collaterals. Circ Res 107:1355–1363CrossRefGoogle Scholar
  6. Chillo O, Kleinert Eike C, Lautz T et al (2016) Perivascular mast cells govern shear stress-induced arteriogenesis by orchestrating leukocyte function. Cell Rep 16:2197–2207CrossRefGoogle Scholar
  7. Conway EM, Collen D, Carmeliet P (2001) Molecular mechanisms of blood vessel growth. Cardiovasc Res 49:507–521CrossRefGoogle Scholar
  8. de Groot D, Pasterkamp G, Hoefer IE (2009) Cardiovascular risk factors and collateral artery formation. Eur J Clin Invest 39:1036–1047CrossRefGoogle Scholar
  9. Deindl E, Buschmann I, Hoefer IE et al (2001) Role of Ischemia and of hypoxia-inducible genes in arteriogenesis after femoral artery occlusion in the rabbit. Circ Res 89:779–786CrossRefGoogle Scholar
  10. Egginton S, Zhou AL, Brown MD et al (2001) Unorthodox angiogenesis in skeletal muscle. Cardiovasc Res 49:634–646CrossRefGoogle Scholar
  11. Hansen-Smith F, Egginton S, Zhou AL et al (2001) Growth of arterioles precedes that of capillaries in stretch-induced angiogenesis in skeletal muscle. Microvasc Res 62:1–14CrossRefGoogle Scholar
  12. Heil M, Ziegelhoeffer T, Wagner S et al (2004) Collateral artery growth (Arteriogenesis) after experimental arterial occlusion is impaired in mice lacking CC-Chemokine Receptor-2. Circ Res 94:671–677CrossRefGoogle Scholar
  13. Heissig B, Rafii S, Akiyama H et al (2005) Low-dose irradiation promotes tissue revascularization through VEGF release from mast cells and MMP-9–mediated progenitor cell mobilization. J Exp Med 202:739–750CrossRefGoogle Scholar
  14. Hoefer IE (2002) Direct evidence for tumor necrosis factor-alpha signaling in arteriogenesis. Circulation 105:1639–1641CrossRefGoogle Scholar
  15. Hur J, Yoon CH, Kim HS et al (2003) Characterization of two types of endothelial progenitor cells and their different contributions to neovasculogenesis. Arterioscl Thromb Vasc Biol 24:288–293CrossRefGoogle Scholar
  16. Kastrup J, Jørgensen E, Drvota V (2001) Vascular growth factor and gene therapy to induce new vessels in the ischemic myocardium. Therapeutic angiogenesis. Scan Cardiovasc J 35:291–296CrossRefGoogle Scholar
  17. Kinnaird T (2004) Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms. Circ Res 94:678–685CrossRefGoogle Scholar
  18. Kinoshita M (2005) Mast cell tryptase in mast cell granules enhances MCP-1 and Interleukin-8 production in human endothelial cells. Arterioscl Thromb Vasc Biol 25:1858–1863CrossRefGoogle Scholar
  19. Kitamura Y, Go S, Hatanaka K (1978) Decrease of mast cells in W/Wv mice and their increase by bone marrow transplantation. Blood 52:447–452PubMedGoogle Scholar
  20. Kusch A, Tkachuk S, Lutter S et al (2002) Monocyte-expressed urokinase regulates human vascular smooth muscle cell migration in a coculture model. Biol Chem 383:217–221CrossRefGoogle Scholar
  21. Lanahan A, Zhang X, Fantin A et al (2013) The neuropilin 1 cytoplasmic domain is required for VEGF-A-dependent arteriogenesis. Dev Cell 25:156–168CrossRefGoogle Scholar
  22. Limbourg A, Korff T, Napp LC et al (2009) Evaluation of postnatal arteriogenesis and angiogenesis in a mouse model of hind-limb ischemia. Nat Prot 4:1737–1748CrossRefGoogle Scholar
  23. Mierke CT, Ballmaier M, Werner U et al (2000) Human endothelial cells regulate survival and proliferation of human mast cells. J Exp Med 192:801–812CrossRefGoogle Scholar
  24. Ren B, Deng Y, Mukhopadhyay A et al (2010) ERK1/2-Akt1 crosstalk regulates arteriogenesis in mice and zebrafish. J Clin Invest 120:1217–1228CrossRefGoogle Scholar
  25. Resnick N, Yahav H, Shay-Salit A et al (2003) Fluid shear stress and the vascular endothelium: for better and for worse. Prog Biophys Mol Biol 81:177–199CrossRefGoogle Scholar
  26. Ribatti D, Nico B, Crivellato E et al (2007a) Macrophages and tumor angiogenesis. Leukemia 21:2085–2089CrossRefGoogle Scholar
  27. Ribatti D, Finato N, Crivellato E et al (2007b) Angiogenesis and mast cells in human breast cancer sentinel lymph nodee with and without micrometastasis. Histopathology 51:837–842CrossRefGoogle Scholar
  28. Ribatti D, Levi-Schaffer F, Kovanen PT (2008) Inflammatory angiogenesis in atherogenesis—a double-edged sword. Ann Med 40:606–621CrossRefGoogle Scholar
  29. Schaper W, Scholz D (2003) Factors regulating arteriogenesis. Arterioscler Thromb Vasc Biol 23:1143–1151CrossRefGoogle Scholar
  30. Scholz D, Ito W, Fleming I et al (2000) Ultrastructure and molecular histology of rabbit hind-limb collateral artery growth (Arteriogenesis). Virchows Arch 436:257–270CrossRefGoogle Scholar
  31. Scholz D, Ziegelhoeffer T, Helisch A et al (2002) Contribution of arteriogenesis and angiogenesis to postocclusive hindlimb perfusion in mice. J Mol Cell Cardiol 34:775–787CrossRefGoogle Scholar
  32. Simons M, Eichmann A (2015) Molecular controls of arterial morphogenesis. Circ Res 116:1712–1724CrossRefGoogle Scholar
  33. Stabile E (2003) Impaired arteriogenic response to acute hindlimb ischemia in CD4-knockout mice. Circulation 108:205–210CrossRefGoogle Scholar
  34. Stabile E (2005) CD8+ T lymphocytes regulate the arteriogenic response to ischemia by infiltrating the site of collateral vessel development and recruiting CD4+ mononuclear cells through the expression of Interleukin-16. Circulation 113:118–124CrossRefGoogle Scholar
  35. Takeda Y, Costa S, Delamarre E et al (2011) Macrophage skewing by Phd2 haplodeficiency prevents ischaemia by inducing arteriogenesis. Nature 479:122–126CrossRefGoogle Scholar
  36. Topper JN, Gimbrone MA Jr (1999) Blood flow and vascular gene expression: fluid shear stress as a modulator of endothelial phenotype. Mol Med Today 5:40–46CrossRefGoogle Scholar
  37. Tronc F, Wassef M, Esposito B et al (1996) Role of NO in flow-induced remodeling of the rabbit common carotid artery. Arterioscler Thromb Vasc Biol 16:1256–1262CrossRefGoogle Scholar
  38. van Royen N, Piek JJ, Buschmann I et al (2001) Stimulation of arteriogenesis; A new concept for the treatment of arterial occlusive disease. Cardiovasc Res 49:543–553CrossRefGoogle Scholar
  39. van Weel V, Toes REM, Seghers L et al (2007) Natural killer cells and CD4+ T-cells modulate collateral artery development. Arterioscl Thromb Vasc Biol 27:2310–2318CrossRefGoogle Scholar
  40. Wolf C, Cai WJ, Vosschulte R et al (1998) Vascular remodeling and altered protein expression during growth of coronary collateral arteries. J Mol Cell Cardiol 30:2291–2305CrossRefGoogle Scholar
  41. Zheng W, Christensen LP, Tomanek RJ (2008) Differential effects of cyclic and static stretch on coronary microvascular endothelial cell receptors and vasculogenic/angiogenic responses. Am J Physiol Heart Circ Physiol 295:H794–H800CrossRefGoogle Scholar
  42. Ziegelhoeffer T (2004) Bone marrow-derived cells do not incorporate into the adult growing vasculature. Circ Res 94:230–238CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Biomedical Sciences, Neurosciences and Sensory OrgansUniversity of BariBariItaly

Personalised recommendations