Mast Cell Biology and Functions

  • Domenico RibattiEmail author


In histological preparations, mast cells usually appear as round or elongated cells with a diameter ranging between 8 and 20 μm, depending on the organ examined. Their single nucleus shows round or oval shape and the cytoplasm contains numerous secretory granules that stain metachromatically with thiazine dyes such as toluidine blue.


  1. Artuc M, Hermes B, Steckelings MU et al (1999) Mast cells and their mediators in wound-healing—active participants or innocent bystanders? Exp Dermatol 8:1–16PubMedCrossRefGoogle Scholar
  2. Artuc M, Steckelings M, Henz BM (2002) Mast cell-fibroblast interactions: human mast cells as source and inducer of fibroblast and epithelial growth factors. J Invest Dermatol 118:391–395PubMedCrossRefGoogle Scholar
  3. Blair RJ, Meng H, Marchese MJ et al (1997) Tryptase is a novel, potent angiogenic factor. J Clin Invest 99:2691–2700PubMedPubMedCentralCrossRefGoogle Scholar
  4. Blank U, Rivera J (2004) The ins and outs of IgE-dependent mast-cell exocytosis. Trends Immunol 25:266–273PubMedCrossRefGoogle Scholar
  5. Bochner BS, Charlesworth EN, Lichtenstein LM et al (1990) Interleukin-1 is released at sites of human cutaneous allergic reactions. J Allergy Clin Immunol 86:830–839PubMedCrossRefGoogle Scholar
  6. Boesiger J, Tsai M, Maurer M et al (1998) Mast cells can secrete vascular Permeabilità factor/vascular endothelial cell growth factor and exhibit enhanced release after immunoglobulin E-dependent upregulation of Fcε receptor I expression. J Exp Med 188:1135–1145PubMedPubMedCentralCrossRefGoogle Scholar
  7. Bradding P, Feather IH, Wilson S et al (1993) Immonolocalization of cytokines in the nasal mucosa of normal and perennial rhinitic subjects. The mast cell as a source of IL-4, IL-5, and IL-6 in Human allergic mucosal inflammation. J Immunol 151:3853–3865PubMedGoogle Scholar
  8. Bradding P, Okayama Y, Howzrth PH et al (1995) Heterogeneity of human mast cells based on cytokine content. J Immunol 155:297–307PubMedGoogle Scholar
  9. Brody D, Metcalfe DD (1998) Mast cells: a unique and functional diversity. Clin Exp Allergy 28:1167–1170PubMedCrossRefGoogle Scholar
  10. Cairns JA, Walls AF (1997) mast cell tryptase stimulate the synthesis of Type I Collagen in human lung fibroblasts. J Clin Invest 99:1313–1321PubMedPubMedCentralCrossRefGoogle Scholar
  11. Chen R, Fairley JA, Zhao ML et al (2002) Macrophages, but not T and B lymphocytes, are critical for subepidermal blister formation in experimental bullous pemphigoid: macrophage-mediated neutrophil infiltration depends on mast cell activation. J Immunol 169:3987–3992PubMedCrossRefGoogle Scholar
  12. Christy AL, Brown MA (2007) The multitasking mast cell: positive and negative roles in the progression of autoimmunity. J Immunol 179:2673–2679PubMedCrossRefGoogle Scholar
  13. Church M, Levi-Schaffer F (1997) The human mast cell. J Allergy Clin Immunol 99:155–160PubMedCrossRefGoogle Scholar
  14. Demeure CE, Brahimi K, Hacini F et al (2005) Anopheles mosquito bites activate cutaneous mast cells leading to a local inflammatory response and lymph node hyperplasia. J Immunol 174:3932–3940PubMedCrossRefGoogle Scholar
  15. Dvorak AM (1991) Basophil and mast cell degranulation and recovery. In: Harris JR (ed), vol 4. Plenum Press, New York (Blood Cell Biochem)Google Scholar
  16. Dvorak AM (2005) ultrastructural studies of human basophils and mast cells. J Histochem Cytochem 53: 1043–1070CrossRefGoogle Scholar
  17. Dvorak AM, Kissell S (1991) Granule changes of human skin mast cells characteristic of piecemeal degranulation and associated with recovery during wound healing in situ. J Leukoc Biol 49:197–210PubMedPubMedCentralGoogle Scholar
  18. Echternacher B, Männel DN, Hültner L (1996) Critical protective role of mast cells in a model of acute septic peritonitis. Nature 381:75–77CrossRefGoogle Scholar
  19. Elbadawi A (1997) Interstitial cystitis: a critique of current concepts with a new proposal for pathologic diagnosis and pathogenesis. Urology 49:14–40PubMedCrossRefGoogle Scholar
  20. Féger F, Varadaradjalou S, Gao Z et al (2002) The role of mast cells in host defense and their subversion by bacterial pathogens. Trends Immunol 23:151–158PubMedCrossRefGoogle Scholar
  21. Forsberg E, Pejler G, Ringvall M et al (1999) Abnormal mast cells in mice deficient in a heparin-synthesizing enzyme. Nature 400:773–776PubMedCrossRefGoogle Scholar
  22. Frangogiannis NG, Lindsey ML, Michael LH et al (1998) Resident cardiac mast cells degranulate and release preformed TNF-Α, initiating the cytokine cascade in experimental canine myocardial ischemia/reperfusion. Circulation 98:699–710PubMedCrossRefGoogle Scholar
  23. Galli SJ, Tsai M, Gordon JR et al (1992) Analyzing mast cell development and function using mice carrying mutations at W/C-Kit or Sl/MGF (SCF) Loci. Ann N Y Acad Sci 664:69–88PubMedCrossRefGoogle Scholar
  24. Galli SJ, Kalesnikoff J, Grimbaldeston MA et al (2005a) Mast cells as “Tunable” effector and immunoregulatory cells: recent advances. Annu Rev Immunol 23:749–786PubMedPubMedCentralCrossRefGoogle Scholar
  25. Galli SJ, Nakae S, Tsai M (2005b) Mast cells in the development of adaptive immune responses. Nat Immunol 6:135–142PubMedPubMedCentralCrossRefGoogle Scholar
  26. Galli SJ, Grimbaldeston M, Tsai M (2008) Immunomodulatory mast cells: negative, as well as positive, regulators of immunity. Nat Rev Immunol 8:478–486PubMedPubMedCentralCrossRefGoogle Scholar
  27. Ganeshan K, Bryce PJ (2012) Enhance mast cell production of IL-6 via surface-bound TGFβ. J Immunol 188:594–603PubMedCrossRefGoogle Scholar
  28. Gombert M, Dieu-Nosjean MC, Winterberg F et al (2005) CCL1-CCR44 interactions: an axis mediating the recruitment of T cells and langerhans-type dendritic cells to sites of atopic skin inflammation. J Immunol 174:5082–5091PubMedCrossRefGoogle Scholar
  29. Gommerman JL, Oh DY, Zhou X et al (2000) A role for CD21/CD35 and CD19 in responses to acute septic peritonitis: a potential mechanism for mast cell activation. J Immunol 165:6915–6921PubMedCrossRefGoogle Scholar
  30. Gordon JR, Galli SJ (1990) Mast cells as a source of both preformed and immunologically inducible TNF-Α/Cachectin. Nature 346:274–276PubMedCrossRefPubMedCentralGoogle Scholar
  31. Gordon JR, Galli SJ (1991) Release of both preformed and newly synthesized Tumor Necrosis Factor Alpha (TNF-Α)/Cachectin by mouse mast cells stimulated via the Fcεri. A mechanism for the sustained action of mast cell-derived TNF-Α during IgE-dependent biological responses. J Exp Med 174:103–107PubMedCrossRefPubMedCentralGoogle Scholar
  32. Gregory GD, Raju SS, Winandry S et al (2006) Mast Cell IL-4 expression is regulated by Ikaros and influences encephalitogenic TH 1 responses in mice. J Clin Invest 116:1327–1336PubMedPubMedCentralCrossRefGoogle Scholar
  33. Gri G, Piconese S, Frossi B et al (2008) CD4+CD25+ regulatory T cells suppress mast cell degranulation and allergic responses through OX40-OX40L interaction. Immunity 29:771–781PubMedPubMedCentralCrossRefGoogle Scholar
  34. Grimbaldenston MA, Nakae S, Kalesnikoff K et al (2007) mast cell-derived interleukin 10 limits skin pathology in contact dermatitis and chronic irradiation with Ultraviolet B. Nat Immunol 8:1095–1104CrossRefGoogle Scholar
  35. Grimbaldeston MA, Chen CC, Piliponski AM et al (2005) Mast cell-deficient W-Sash C-Kit mutant Kitw-Sh/W-Sh mice as a model for investigating mast cell biology in vivo. Am J Pathol 167:835–848PubMedPubMedCentralCrossRefGoogle Scholar
  36. Gruber BL, Marchese MJ, Kew RR (1994) Transforming growth factor-β1 mediates mast cell chemotaxis. J Immunol 152:5860–5867PubMedGoogle Scholar
  37. Gruber BL, Kew RR, Jelaska A et al (1997) Human mast cells activate fibroblasts. J Immunol 158:2310–2317PubMedPubMedCentralGoogle Scholar
  38. Gurish MF, Austen KF (2001) The diverse role of mast cells. J Exp Med 194:F1–F5PubMedPubMedCentralCrossRefGoogle Scholar
  39. Huang C, Sali A, Stevens RL (1998) Regulation and function of mast cell proteases in inflammation. J Clin Immunol 18:169–183Google Scholar
  40. Humphries DE, Wong GW, Friend DS et al (1999) Heparin is essential for the storage of specific granule proteases in mast cells. Nature 400:769–772PubMedCrossRefPubMedCentralGoogle Scholar
  41. Humrich JY, Humrich JH, Averbeck M et al (2006) Mature monocyte-derived dendritic cells respond more strongly to CCL19 than to CXCL12: consequences for directional migration. Immunology 117:238–247PubMedPubMedCentralCrossRefGoogle Scholar
  42. Jawdat DM, Rowden G, Marshall JS (2006) Mast cells have a pivotal role in TNF-independent lymph node hypertrophy and the mobilization of langerhans cells in response to bacterial peptidoglycan. J Immunol 177:1755–1762PubMedCrossRefPubMedCentralGoogle Scholar
  43. Johnson AR, Hugli TE, Müller-Eberhard HJ (1975) Release of histamine from rat mast cells by the complement Peptides C3a and C5a. Immunology 28:1067PubMedPubMedCentralGoogle Scholar
  44. Kakurai M, Monteforte R, Suto H et al (2006) mast cell-derived tumor necrosis factor can promote nerve fiber elongation in the skin during contact hypersensitivity in mice. Am J Pathol 169:1713–1721PubMedPubMedCentralCrossRefGoogle Scholar
  45. Kambayashi T, Baranski JD, Baker RG et al (2008) Indirect involvement of allergen-captured mast cells in antigen presentation. Blood 111:1489–1496PubMedPubMedCentralCrossRefGoogle Scholar
  46. Kenny PA, Mc Donald PJ, Finlay-Jones JJ (1993) The effect of cytokines on bactericidal activity of murine neutrophils. FEMS Immunol Med Microbiol 7:271–279PubMedCrossRefPubMedCentralGoogle Scholar
  47. Kitamura Y, Go S, Hatanaka K (1978) Decrease of mast cells in W/Wv mice and their increase by bone marrow transplantation. Blood 52:447–452PubMedPubMedCentralGoogle Scholar
  48. Knight PA, Wright SH, Lawrence CE et al (2000) Delayed expulsion of the nematode trichinella spiralis in mice lacking the mucosal mast cell-specific granule chymase, mause mast cell Protease-1. J Exp Med 192:1849–1856PubMedPubMedCentralCrossRefGoogle Scholar
  49. Lee DM, Friend DS, Gurish MF et al (2002) Mast cells: a cellular link between autoantobodies and inflammatory arthritis. Science 297:1689–1692PubMedCrossRefPubMedCentralGoogle Scholar
  50. Liebler JM, Picou MA, Qu Z et al (1997) Altered immunohistochemical localization of basic fibroblast growth factor after bleomycin-induced lung injury. Growth Factors 14:25–38PubMedCrossRefPubMedCentralGoogle Scholar
  51. Lorentz A, Bischoff SC (2001) Regulation of human intestinal mast cells by stem cell factor and IL-4. Immunol Rev 179:57–60CrossRefGoogle Scholar
  52. Lu LF, Lind EF, Gondek DC et al (2006) Mast cells are essential intermediaries in regulatory T-cell tolerance. Nature 442:997–1002PubMedCrossRefGoogle Scholar
  53. Malaviya R, Ikeda T, Ross E et al (1996) Mast cell modulation of neurtophil influx and bacterial clearance at sites of infection through TNF-α. Nature 381:77–80PubMedCrossRefGoogle Scholar
  54. Marshall JS (2004) Mast-cell responses to pathogens. Nat Rev Immunol 4:787–799PubMedCrossRefGoogle Scholar
  55. Masini E, Bechi P, Dei R et al (1994) Helicobacter pylori potentiates histamine release from rat serosal mast cells induced by bile acids. Dig Dis Sci 39:1493–1500PubMedCrossRefGoogle Scholar
  56. Maurer M, Wedemeyer J Metz M et al (2004) Mast cells promote homeostasis by limiting Endothelin-1-Induced toxicity. Nature 432: 512–516PubMedCrossRefPubMedCentralGoogle Scholar
  57. Maurer M, Echternacher B, Hültner L et al (1998) The c-kit ligand, stem-cell factor, can enhance innate immunity through effects on mast cells. J Exp Med 188:2343–2348PubMedPubMedCentralCrossRefGoogle Scholar
  58. Maurer M, Lopez Kostka S, Siebenhaar F et al (2006) Skin mast cells control T cell-dependent host defence in leishmania major infections. FASEB J 20:2460–2467PubMedCrossRefPubMedCentralGoogle Scholar
  59. Metcalfe DD, Baram D, Mekori YA (1997) Mast cells. Physiol Rev 77:1033–1079CrossRefGoogle Scholar
  60. Metz M, Piliponsky AM, Chen CC et al (2006) Mast cells can enhance resistance to Snake and Honeybee venoms. Science 313:526–530PubMedCrossRefPubMedCentralGoogle Scholar
  61. Miller HR, Pemberton AD (2002) Tissue-specific expression of mast cell granule serine proteinases and their role in inflammation in the lung and gut. Immunology 105:375–390PubMedPubMedCentralCrossRefGoogle Scholar
  62. Miller JS, Westin EH, Schwartz LB (1989) Cloning and characterization of complementary DNA for Human tryptase. J Clin Invest 84:1188–1195PubMedPubMedCentralCrossRefGoogle Scholar
  63. Miller JS, Moxley G, Schwartz LB (1990) Cloning and characterization of a second complementary DNA for Human tryptase. J Clin Invest 86:864–870PubMedPubMedCentralCrossRefGoogle Scholar
  64. Moller A, Lippert U, Lessmann D et al (1993) Human mast cells produce IL-8. J Immunol 151:3261–3266PubMedGoogle Scholar
  65. Nakae S, Suto H, Hakurai M et al (2005) Mast cells enhance t cell activation: importance of mast cell-derived TNF. Proc Natl Acad Sci USA 102:6467–6472PubMedCrossRefGoogle Scholar
  66. Nakae S, Suto H, Iikura M et al (2006) Mast cells enhance T cell activation: importance of mast cell costimulatory molecules and secreted TNF. J Immunol 176:2238–2248PubMedCrossRefGoogle Scholar
  67. Nakajima S, Krishnan B, Ota H et al (1997) Mast-cell involvement in gastritis with or without Helicobacter pylori infection. Gastroenterol 113:746–754PubMedCrossRefGoogle Scholar
  68. Nigrovic PA, Lee DM (2007) Synovial mast cells: role in acute and chronic arthritis. Immunol Rev 217:19–37PubMedCrossRefGoogle Scholar
  69. Nocka K, Tan JC, Chiu E et al (1990) Molecular bases of dominant negative and loss of function mutations at the Murine C-Kit/White spotting locus, W37, Wv, W41 and W. EMBO J 9:1805–1813PubMedPubMedCentralCrossRefGoogle Scholar
  70. Noubade R, Milligan G, Zachary JF et al (2007) Histamine receptor H1 is required or TCR-mediated p38 MAPK activation and optimal IFNγ production in mice. J Clin Invest 117:3507–3518PubMedPubMedCentralCrossRefGoogle Scholar
  71. Olsson N, Ulfgren AK, Nilsson G (2001) Demonstration of mast cell chemotactic activity in synovial fluid from rheumatoid patients. Ann Rheum Dis 60:187–193PubMedPubMedCentralCrossRefGoogle Scholar
  72. Orinska Z, Maurer M, Mirghomizadeh F et al (2007) IL-15 constrains mast cell-dependent antibacterial defenses by suppressing chymase activities. Nat Med 13:927–934PubMedCrossRefGoogle Scholar
  73. Ott VL, Cambier JC, Kappler J et al (2003) Mast cell-dependent migration of effector CD8+ T cells through production of leukotriene B4. Nat Immunol 4:974–981PubMedCrossRefGoogle Scholar
  74. Piliponsky AM, Chen CC, Nishimura T et al (2008) Neurotensin increases mortality and mast cells reduce neurotensin levels in a mouse model of sepsis. Nat Med 14:392–398PubMedPubMedCentralCrossRefGoogle Scholar
  75. Plebani M, Basso D, Vianello F et al (1994) Helicobacter pylori activates gastric mucosal mast cells. Dig Dis Sci 39:1592–1593PubMedCrossRefGoogle Scholar
  76. Prodeus AP, Zhou X, Maurer M et al (1997) Impaired mast cell-dependent natural immunity in complement C3-deficient mice. Nature 390:172–175PubMedCrossRefGoogle Scholar
  77. Pulimood AB, Mathan MM, Mathan VI (1998) Quantitative and ultrastructural analysis of rectal mucosal mast cells in acute infectious diarrhea. Dig Dis Sci 43:2111–2116PubMedCrossRefGoogle Scholar
  78. Rauter I, Krauth MT, Westritschnig K et al (2008) Mast cell-derived proteases control allergic inflammation through cleavage of IgE. J Allergy Clin Immunol 121:197–202PubMedCrossRefGoogle Scholar
  79. Ruoss SJ, Hartmann T, Caughey GH (1991) Mast cell tryptase is a mitogen for cultured fibroblasts. J Clin Invest 88:493–499PubMedPubMedCentralCrossRefGoogle Scholar
  80. Sayed BA, Christy A, Quirion MR et al (2008) The master switch: the role of mast cells in autoimmunity and tolerance. Annu Rev Immunol 26:705–739PubMedPubMedCentralCrossRefGoogle Scholar
  81. Schwartz LB, Irani AA, Roller K et al (1987) Quantitation of histamine, tryptase and chymase in dispersed Human T and TC mast cells. J Immunol 138:2611–2615Google Scholar
  82. Seibold JR, Giorno RC, Claman HN (1990) Dermal mast cell degranulation in systemic sclerosis. Arthritis Rheum 33:1702–1709PubMedCrossRefGoogle Scholar
  83. Sher A, Hein A, Moser G et al (1979) Complements receptors promote the phagocytosis of bacteria by rat peritoneal mast cells. Lab Invest 41:490–499PubMedGoogle Scholar
  84. Shin JS, Gao Z, Abraham SN (2000) Involvement of cellular caveolae in bacterial entry into mast cells. Sci 289:785–788PubMedCrossRefGoogle Scholar
  85. Shin K, Watts GF, Oettgen HC et al (2008) Mouse mast cell tryptase Mmcp-6 is a critical link between adaptive and innate immunity in the chronic phase of trichinella spiralis infection. J Immunol 180:4885–4891PubMedPubMedCentralCrossRefGoogle Scholar
  86. Stead RH, Kosecka-Janiszewska U, Oestreicher AB et al (1991) Remodeling of B-50 (GAP-43)- and NSE-immunoreactive mucosal nerves in the intestines of rats infected with nippostrongylis brasiliensis. J Neurosci 11:3809–3821PubMedCrossRefGoogle Scholar
  87. Stevens RL, Friend DS, McNeil HP et al (1993) Stran-specific and tissue-specific of mouse mast cell secretory granule proteases. Proc Natl Acad Sci USA 91:128–132CrossRefGoogle Scholar
  88. Sun J, Sukhova GK, Wolters PJ et al (2007a) Mast cells promote atherosclerosis by releasing proinflammatory cytokines. Nat Med 13:719–724PubMedCrossRefGoogle Scholar
  89. Sun J, Sukhova GK, Yang M et al (2007b) Mast cells modulate the pathogenesis of elastase-induced abdominal aortic aneurysms in mice. J Clin Invest 117:3359–3368PubMedPubMedCentralCrossRefGoogle Scholar
  90. Taipale J, Lohi J, Saarinen J et al (1995) Human mast cell chymase and leukocyte elastase release latent transforming growth factor Beta-1 from the extracellular matrix of cultured human epithelial and endothelial cells. J Biol Chem 270:4689–4696PubMedPubMedCentralCrossRefGoogle Scholar
  91. Talkington J, Nickell SP (2001) Role of Fgγ receptors in triggering host-cell activation and cytokine release by borrelia burgdorferi. Infect Immun 69:413–419PubMedPubMedCentralCrossRefGoogle Scholar
  92. Thabrew H, Cairns JA, Walls AF (1996) Mast cell tryptase is a growth factor for human airway smooth muscle. J Allergy Clin Immunol 97:969CrossRefGoogle Scholar
  93. Thakurdas SM, Melicoff E, Sansores-Garcia L et al (2007) The mast cell restricted tryptase Mmcp-6 has a critical immunoprotective role in bacterial infection. J Biol Chem 282:20809–20815PubMedCrossRefGoogle Scholar
  94. Vanderslice P, Ballinger SM, Tam EK et al (1990) Human mast cell tryptase: multiple cdnas and genes reveal a multigene serine protease family. Proc Natl Acad Sci USA 87: 3811–3815CrossRefGoogle Scholar
  95. Walsh LJ, Trinchieri G, Waldorf HA et al (1991) Human dermal mast cells contain and release tumor necrosis factor alpha, which induces endothelial leukocyte adhesion molecule 1. Proc Natl Acad Sci USA 88:4220–4224PubMedCrossRefGoogle Scholar
  96. Weller K, Foitzik K, Paus R et al (2006) Mast cells are required for normal healing of skin wounds in mice. FASEB J 20:2366–2368PubMedCrossRefGoogle Scholar
  97. Wojtecka-Lukasik E, Maslinski S (1992) Fibronectin and fibrinogen degradation products stimulate PMN-leukocytes and mast-cell degranulation. J Physiol Pharmacol 43:173–181PubMedGoogle Scholar
  98. Yamazaki S, Yokozechi H, Satoh T et al (1998) TNF-Alpha, RANTES, and MCP-1 are major chemoattractants in murine langerhans cells to the regional lymoh nodes. Exp Dermatol 7:35–41PubMedCrossRefGoogle Scholar
  99. Yang Z, Zhang B, Li D et al (2010) Mast cells mobilize myeloid-derived suppressor cells and Treg cells in tumor microenvironment via IL-17 pathway in murine hepatocarcinoma model. PLoS ONE 5:e8922PubMedPubMedCentralCrossRefGoogle Scholar
  100. Zhou JS, Xing W, Friend DS et al (2007) Mast cell deficiency in Kit(W-Sh) mice does not impair antibody-mediated arthritis. J Exp Med 204:2797–2802PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Biomedical Sciences, Neurosciences and Sensory OrgansUniversity of BariBariItaly

Personalised recommendations