Advertisement

Mast Cell Ontogeny

  • Domenico RibattiEmail author
Chapter

Abstract

Paul Ehrlich firstly described mast cells in his doctoral thesis at the Medical Faculty of Leipzig University (Crivellato et al. 2003). Ehrlich recognized two types of mast cells.

References

  1. Abonia JP, Austen KF, Rollins BJ et al (2005) Constitutive homing of mast cell progenitors to the intestine depends on autologous expression of the chemokine receptor CXCR45. Blood 105:4308–4313CrossRefGoogle Scholar
  2. Alcaide P, Jones TG, Lord GM et al (2007) Dendritic cell expression of the transcription factor t-bet regulates mast cell progenitor homing to mucosal tissue. J Exp Med 204:431–439CrossRefGoogle Scholar
  3. Aloe L, Levi Montalcini R (1977) Mast cells increase in tissues of neonatal rats injected with the nerve growth factor. Brain Res 133:358–366CrossRefGoogle Scholar
  4. Arinobu Y, Iwasaki H, Gurish MF et al (2005) Developmental checkpoints of the basophil/mast cell lineages in adult murine hematopoiesis. Proc Natl Acad Sci USA 102:18105–18110CrossRefGoogle Scholar
  5. Ashman LK (1999) The biology of stem cell factor and its receptor C-Kit. Int J Biochem Cell Biol 31:1037–1051CrossRefGoogle Scholar
  6. Babina M, SchülkeY Kirchhof L et al (2005) The transcription factor profile of human mast cells in comparison with monocytes and granulocytes. Cell Mol Life Sci 62:214–226CrossRefGoogle Scholar
  7. Bellone G, Smime C, Carbone A et al (2006) KIT/stem cell factor expression in premalignant and malignant lesions of the colon mucosa in relationship to disease progression and oucomes. Int J Oncol 29:851–859PubMedGoogle Scholar
  8. Bischoff SC, Sellge G, Lorentz A et al (1999) IL-4 enhances proliferation and mediator release in mature human mast cells. Proc Natl Acad Sci 96:8080–8085CrossRefGoogle Scholar
  9. Boyce JA (2002) Human mast cell progenitors use alpha 4-integrin, VCAM-1, and PSGL-1 E-selectin for adhesive interactions with human vascular endothelium under flow conditions. Blood 99:2890–2896CrossRefGoogle Scholar
  10. Butterfield JH, Weiler D, Dewald G et al (1988) Establishment of an Immature Mast Cell Line from a Patient with Mast Cell Leukemia. Leuk Res 12:345–355CrossRefGoogle Scholar
  11. Cantor AB, Iwasaki H, Arinobu Y et al (2008) Antagonism of FOG-1 and GATA factors in fate choice for the mast cell lineage. J Exp Med 205:611–624CrossRefGoogle Scholar
  12. Chen CC, Grimbaldeston MA, Tsai M et al (2005) Identification of mast cell progenitors in adult mice. Proc Natl Acad Sci USA 102: 11408–11413.Google Scholar
  13. Costa JJ, Demetri GD, Harrist TJ et al (1996) Recombinant human stem cell factor (kit ligand) promotes human mast cell and melanocyte hyperplasia and functional activation in vivo. J Exp Med 183:2681–2686CrossRefGoogle Scholar
  14. Crapper RM, Schrader JW (1983) Frequency of mast cell precursors in normal tissues determined by an in vitro assay: antigen induces parallel increases in the frequency of P cell precursors and mast cells. J Immunol 131:923–928PubMedGoogle Scholar
  15. Crivellato E, Beltrami C, Mallardi F et al (2003) Paul Ehrlich’s doctoral thesis: a milestone in the study of mast cells. Br J Haematol 123:19–21CrossRefGoogle Scholar
  16. Crivellato E, Nico B, Battistig M et al (2004) The thymus is a site of mast cell development in chicken embryos. Anat Embryol (Berl) 209:243–249CrossRefGoogle Scholar
  17. Ehrlich PLA (1898) Die Anemie, 1. Holder, Normale und Patologische Histologie des Blutes WienGoogle Scholar
  18. Enerbäck L (1966a) Mast cells in rat gastrointestinal mucosa. I. effects of fixation. Acta Pathol Microbiol Scand 66:289–302CrossRefGoogle Scholar
  19. Enerbäck L (1966b) Mast cells in rat gastrointestinal mucosa. 2. dye-binding and metachromatic properties. Acta Pathol Microbiol Scand 66:303–312CrossRefGoogle Scholar
  20. Furitsu T, Saito H, Dvorak AM et al (1989) Development of human mast cells in vitro. Proc Natl Acad Sci 86:10039–10043CrossRefGoogle Scholar
  21. Galli SJ, Kalesnikoff J, Grimbaldeston MA et al (2005a) Mast cells as “Tunable” effector and immunoregulatory cells: recent advances. Annu Rev Immunol 23:749–786CrossRefGoogle Scholar
  22. Galli SJ, Nakae S, Tsai M (2005b) Mast cells in the development of adaptive immune responses. Nat Immunol 6:135–142CrossRefGoogle Scholar
  23. Ginsburg H, Lagunoff D (1967) The in vitro differentiation of mast cells. Cultures of cells from immunized mouse lymph nodes and thoracic duct lymph on fibroblast monolayers. J Cell Biol 35:685–697CrossRefGoogle Scholar
  24. Grimbaldeston MA, Chen CC, Piliponski AM et al (2005) Mast cell-deficient W-sash C-kit mutant kitw-Sh/W-Sh mice as a model for investigating mast cell biology in vivo. Am J Pathol 167:835–848CrossRefGoogle Scholar
  25. Gurish MF, Austen KF (2001) The diverse role of mast cells. J Exp Med 194:F1–F5CrossRefGoogle Scholar
  26. Gurish MF, Boyce JA (2006) Mast cells: ontogeny, homing, and recruitment of a unique innate effector cell. J Allergy Clin Immunol 117:1285–1291CrossRefGoogle Scholar
  27. Gurish MF, Tao H, Abonia JP et al (2001) Intestinal mast cell progenitors require CD49dbeta7 (Alpha4beta7 Integrin) for tissue-specific homing. J Exp Med 194:1243–1252CrossRefGoogle Scholar
  28. Hardy WB, Wesbrook FF (1895) The wandering cells of the alimentary canal. J Physiol 18:490–493CrossRefGoogle Scholar
  29. Huang B, Lei Z, Zhang GM et al (2008) SCF-mediated mast cell infiltration and activation exacerbate the inflammation and immunosuppression in tumor microenvironment. Blood 112:1269–1279CrossRefGoogle Scholar
  30. Irani AA, Schechter NM, Craig SS et al (1986) Two types of human mast cells that have distinct neutral protease compositions. Proc Natl Acad Sci USA 83:4464–4468CrossRefGoogle Scholar
  31. Irani AM, Nilsson G, Miettinen U et al (1992) Recombinant human stem cell factor stimulates differentiation of mast cells from dispersed human fetal liver cells. Blood 80:3009–3021PubMedGoogle Scholar
  32. Ishizaka T, Okudaira H, Mauser LE et al (1976) Development of rat mast cells in vitro. I. Differentiation of mast cells from thymus cells. J Immunol 116:747–754PubMedGoogle Scholar
  33. Iwasaki H, Mizuno SI, Arinobu Y et al (2006) The order of expression of transcription factors directs hierarchical specification of hematopoietic lineages. Genes Dev 20:3010–3021CrossRefGoogle Scholar
  34. Jolly M (1900) Clasmatocytes et mastzellen. Comp Rend Soc Biol (Paris) 52:437–455Google Scholar
  35. Kanbe N, Kurosawa M, Miyachi Y et al (2000) Nerve growth factor prevents apoptosis of cord blood-derived human cultured mast cells synergistically with stem cell factor. Clin Exp Allergy 30:1113–1120CrossRefGoogle Scholar
  36. Kanthack AA, Hardy WB (1894) The morphology and distribution of the wandering cells of mammalia. J Physiol 17:80–119CrossRefGoogle Scholar
  37. Kinoshita T, Sawai N, Hidaka E et al (1999) Interleukin-6 directly modulates stem cell factor-dependent development of human mast cells derived from CD34 + cord blood cells. Blood 4:496–508Google Scholar
  38. Kirshenbaum AS, Kessler SW, Goff JP et al (1991) Demonstration of the origin of human mast cells from CD34 + bone marrow progenitor cells. J Immunol 146:1410–1415PubMedGoogle Scholar
  39. Kirshenbaum AS, Goff JP, Dreskin SC et al (1989) IL-3-dependent growth of basophil-like cells and mast like cells from human bone marrow. J Immunol 149:2424–2429Google Scholar
  40. Kirshenbaum AS, Goff JP, Kessler SW et al (1992) Effect of IL-3 and stem cell factor on the appearance of human basophils and mast cells from CD34 + pluripotent progenitor cells. J Immunol 148:772–777PubMedGoogle Scholar
  41. Kitamura Y, Go S (1979) Decreased production of mast cells in S1/S1d anemic mice. Blood 53:492–497PubMedGoogle Scholar
  42. Kitamura Y, Ito A (2005) Mast cell-committed progenitors. Proc Natl Acad Sci 102:11129–11130CrossRefGoogle Scholar
  43. Kitamura Y, Shimada M, Hatanaka et al (1977) Development of mast cells from grafted bone marrow cells in irradiated mice. Nature 268: 442–443CrossRefGoogle Scholar
  44. Kitamura Y, Go S, Hatanaka K (1978) Decrease of mast cells in W/Wv mice and their increase by bone marrow transplantation. Blood 52:447–452PubMedPubMedCentralGoogle Scholar
  45. Lantz CS, Boesiger J, Song CH et al (1998) Role for interleukin-3 In mast-cell and basophil development and in immunity to parasites. Nature 392:90–93CrossRefGoogle Scholar
  46. Levi-Schaffer F, Austen KF, Gravallese PM et al (1986) Coculture of Interleukin 3-dependent mouse mast cells with fibroblasts results in a phenotypic change of the mast cells. Proc Natl Acad Sci 83:6485–6488CrossRefGoogle Scholar
  47. Levi-Schaffer F, Austen KF, Caulfield JP et al (1987a) Co-culture of human lung-derived mast cells with mouse 3T3 fibroblasts: morphology and Ige-mediated release of histamine, prostaglandin D2, and leukotrienes. J Immunol 139:494–500PubMedGoogle Scholar
  48. Levi-Schaffer F, Dayton ET, Austen KF et al (1987b) Mouse bone marrow-derived mast cells cocultured with fibroblasts. morphology and stimulation-induced release of histamine, leukotriene B4, leukotriene C4, and prostaglandin D2. J Immunol 139:3431–3441PubMedGoogle Scholar
  49. Lorentz A (2002) Regulatory effects of stem cell factor and interleukin-4 on adhesion of human mast cells to extracellular matrix proteins. Blood 99:966–972CrossRefGoogle Scholar
  50. Lorentz A, Bischoff SC (2001) Regulation of human intestinal mast cells by stem cell factor and IL-4. Immunol Rev 179:57–60CrossRefGoogle Scholar
  51. Lorentz A, Hoppe J, Worthmann H et al (2007) Neurotrophin-3, but not nerve growth factor, promotes survival of human intestinal mast cells. Neurogastroenterol Motil 19:301–308CrossRefGoogle Scholar
  52. Matsuda H, Kannan Y, Ushio H et al (1991) Nerve growth factor induces development of connective tissue-type mast cells in vitro from murine bone marrow cells. J Exp Med 174:7–14CrossRefGoogle Scholar
  53. Matsuzawa S, Sakashita K, Kinoshita T et al (2003) IL-9 enhances the growth of human mast cell progenitors under stimulation with stem cell factor. J Immunol 170:3461–3467CrossRefGoogle Scholar
  54. Mitsui H, Furitsu T, Dvorak AM et al (1993) Development of human mast cells from umbilical cord blood cells by recombinant human and murine c-kit ligand. Proc Natl Acad Sci 90:735–739CrossRefGoogle Scholar
  55. Moller C, Alfredsson J, Engström M et al (2005) Stem cell factor promotes mast cell survival via inactivation of FOXO3a-mediated transcriptional induction and MEK-regulated phosphorylation of the proapoptotic protein Bim. Blood 106:1330–1336CrossRefGoogle Scholar
  56. Nagao K, Yokoro K, Aaronson S (1981) Continuous lines of basophil/mast cells derived from normal mouse bone marrow. Science 212:333–335CrossRefGoogle Scholar
  57. Nakano T, Sonoda T, Hayashi C, et al (1985) Fate of bone marrow-derived cultured mast cells after intracutaneous, intraperitoneal, and intravenous transfer into genetically mast cell-deficient W/Wv mice: evidence that cultured mast cells can give rise to both connective tissue type and mucosal mast cells. J Exp Med 162:1025–1043CrossRefGoogle Scholar
  58. Nishiyama C (2005) GATA-1 Is Required for Expression of Fc RI on Mast Cells: Analysis of Mast Cells Derived from GATA-1 Knockdown Mouse Bone Marrow. Int Immunol 17:847–856CrossRefGoogle Scholar
  59. Ochi H, Hirani WM, Yuan Q et al (1999) T helper cell type 2 cytokine-mediated comitogenic responses and Ccr3 expression during differentiation of human mast cells in vitro. J Exp Med 190:267–280CrossRefGoogle Scholar
  60. Okayama Y, Kawakami T (2006) Development, migration and survival of mast cells. Immunol Res 34:97–115CrossRefGoogle Scholar
  61. Pittoni P, Tripodo C, Piconese S et al (2011) Mast cell targeting hampers prostate adenocarcinoma development but promotes the occurrence of highly malignant neuroendocrine cancers. Cancer Res 71:5987–5997CrossRefGoogle Scholar
  62. Rodewald HR, Dessing M, Dvorak AM et al (1996) Identification of a committed precursor for the mast cell lineage. Science 271:818–822CrossRefGoogle Scholar
  63. Rubin BP, Heinrich MC, Corless CL (2007) Gastrointestinal stromal tumour. Lancet 369:1731–1734CrossRefGoogle Scholar
  64. Saito H (2006) Culture of human mast cells from hemopoietic progenitors. Methods Mol Biol 315:113–122PubMedGoogle Scholar
  65. Sakata-Yanagimoto M, Sakai T, Miyake Y et al (2011) Notch 2 signaling is required for proper mast cell distribution and mucosal immunity in the intestine. Blood 117:128–134CrossRefGoogle Scholar
  66. Taghon T, Yui MA, Rothenberg EV (2007) Mast cell lineage diversion of T lineage precursors by the essential T cell transcription factor GATA-3. Nat Immunol 8:845–855CrossRefGoogle Scholar
  67. Tam SY, Tsai M, Yamaguchi M et al (1997) Expression of functional trka receptor tyrosine kinase in the HMC-1 human mast cell line and in human mast cells. Blood 90:1807–1820PubMedGoogle Scholar
  68. Tei H, Kasugai T, Tsuijimura T et al (1994) Characterization of cultured mast cells derived from Ws/Ws mast cell-deficient rats with a small deletion at tyrosine kinase domain of c-kit. Blood 83:913–925Google Scholar
  69. Tsai M (1991) The rat c-kit ligand, stem cell factor, induces the development of connective tissue-type and mucosal mast cells in vivo. analysis by anatomical distribution, histochemistry, and protease phenotype. J Exp Med 174:125–131CrossRefGoogle Scholar
  70. Valent P, Spanblochl E, Sperr WR et al (1992) Induction of differentiation of human mast cells from bone marrow and peripheral blood mononuclear cells by recombinant human stem cell factor/kit-ligand in long-term culture. Blood 80:2237–2245PubMedGoogle Scholar
  71. Valent P, Akin C, Sperr WR et al (2005) Mastocytosis: pathology, genetics and current options for therapy. Leuk Lymph 46:35–48CrossRefGoogle Scholar
  72. Williams HU (1900) A critical summary of recent literature on plasma-cells and mast cells. Am J Med Sci 119:702–709CrossRefGoogle Scholar
  73. Winandy S, Brown M (2007) No DL1 notch ligand? GATA Be a mast cell. Nat Immunol 8:796–797CrossRefGoogle Scholar
  74. Zhang W, Stoica G, Tasca SI et al (2000) Modulation of tumor angiogenesis by stem cell factor. Cancer Res 60:6757–6762PubMedGoogle Scholar
  75. Zhou JS, Xing W, Friend DS et al (2007) Mast cell deficiency in Kit(W-Sh) mice does not impair antibody-mediated arthritis. J Exp Med 204:2797–2802CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Biomedical Sciences, Neurosciences and Sensory OrgansUniversity of BariBariItaly

Personalised recommendations